This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open set is a neighborhood of any of its subsets. (Contributed by NM, 13-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opnneiss | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁 ) → 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁 ) → 𝑆 ⊆ 𝑁 ) | |
| 2 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 3 | 2 | eltopss | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ) → 𝑁 ⊆ ∪ 𝐽 ) |
| 4 | sstr | ⊢ ( ( 𝑆 ⊆ 𝑁 ∧ 𝑁 ⊆ ∪ 𝐽 ) → 𝑆 ⊆ ∪ 𝐽 ) | |
| 5 | 4 | ancoms | ⊢ ( ( 𝑁 ⊆ ∪ 𝐽 ∧ 𝑆 ⊆ 𝑁 ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 6 | 3 5 | stoic3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁 ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 7 | 2 | opnneissb | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( 𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 8 | 6 7 | syld3an3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁 ) → ( 𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 9 | 1 8 | mpbid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁 ) → 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |