This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology generated by a normed structure. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tngbas.t | ⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) | |
| tngtset.2 | ⊢ 𝐷 = ( dist ‘ 𝑇 ) | ||
| tngtset.3 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | ||
| Assertion | tngtopn | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → 𝐽 = ( TopOpen ‘ 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tngbas.t | ⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) | |
| 2 | tngtset.2 | ⊢ 𝐷 = ( dist ‘ 𝑇 ) | |
| 3 | tngtset.3 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 4 | 1 2 3 | tngtset | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → 𝐽 = ( TopSet ‘ 𝑇 ) ) |
| 5 | df-mopn | ⊢ MetOpen = ( 𝑥 ∈ ∪ ran ∞Met ↦ ( topGen ‘ ran ( ball ‘ 𝑥 ) ) ) | |
| 6 | 5 | dmmptss | ⊢ dom MetOpen ⊆ ∪ ran ∞Met |
| 7 | 6 | sseli | ⊢ ( 𝐷 ∈ dom MetOpen → 𝐷 ∈ ∪ ran ∞Met ) |
| 8 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 9 | 1 8 | tngds | ⊢ ( 𝑁 ∈ 𝑊 → ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) = ( dist ‘ 𝑇 ) ) |
| 10 | 9 2 | eqtr4di | ⊢ ( 𝑁 ∈ 𝑊 → ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) = 𝐷 ) |
| 11 | 10 | adantl | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) = 𝐷 ) |
| 12 | 11 | dmeqd | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → dom ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) = dom 𝐷 ) |
| 13 | dmcoss | ⊢ dom ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ⊆ dom ( -g ‘ 𝐺 ) | |
| 14 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 15 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 16 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 17 | 14 15 16 8 | grpsubfval | ⊢ ( -g ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) , 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 18 | ovex | ⊢ ( 𝑥 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ∈ V | |
| 19 | 17 18 | dmmpo | ⊢ dom ( -g ‘ 𝐺 ) = ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) |
| 20 | 13 19 | sseqtri | ⊢ dom ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ⊆ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) |
| 21 | 12 20 | eqsstrrdi | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → dom 𝐷 ⊆ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) |
| 22 | 21 | adantr | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) ∧ 𝐷 ∈ ∪ ran ∞Met ) → dom 𝐷 ⊆ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) |
| 23 | dmss | ⊢ ( dom 𝐷 ⊆ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) → dom dom 𝐷 ⊆ dom ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) | |
| 24 | 22 23 | syl | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) ∧ 𝐷 ∈ ∪ ran ∞Met ) → dom dom 𝐷 ⊆ dom ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) |
| 25 | dmxpid | ⊢ dom ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) = ( Base ‘ 𝐺 ) | |
| 26 | 24 25 | sseqtrdi | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) ∧ 𝐷 ∈ ∪ ran ∞Met ) → dom dom 𝐷 ⊆ ( Base ‘ 𝐺 ) ) |
| 27 | simpr | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) ∧ 𝐷 ∈ ∪ ran ∞Met ) → 𝐷 ∈ ∪ ran ∞Met ) | |
| 28 | xmetunirn | ⊢ ( 𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) ) | |
| 29 | 27 28 | sylib | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) ∧ 𝐷 ∈ ∪ ran ∞Met ) → 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) ) |
| 30 | eqid | ⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) | |
| 31 | 30 | mopnuni | ⊢ ( 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) → dom dom 𝐷 = ∪ ( MetOpen ‘ 𝐷 ) ) |
| 32 | 29 31 | syl | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) ∧ 𝐷 ∈ ∪ ran ∞Met ) → dom dom 𝐷 = ∪ ( MetOpen ‘ 𝐷 ) ) |
| 33 | 1 14 | tngbas | ⊢ ( 𝑁 ∈ 𝑊 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝑇 ) ) |
| 34 | 33 | ad2antlr | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) ∧ 𝐷 ∈ ∪ ran ∞Met ) → ( Base ‘ 𝐺 ) = ( Base ‘ 𝑇 ) ) |
| 35 | 26 32 34 | 3sstr3d | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) ∧ 𝐷 ∈ ∪ ran ∞Met ) → ∪ ( MetOpen ‘ 𝐷 ) ⊆ ( Base ‘ 𝑇 ) ) |
| 36 | sspwuni | ⊢ ( ( MetOpen ‘ 𝐷 ) ⊆ 𝒫 ( Base ‘ 𝑇 ) ↔ ∪ ( MetOpen ‘ 𝐷 ) ⊆ ( Base ‘ 𝑇 ) ) | |
| 37 | 35 36 | sylibr | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) ∧ 𝐷 ∈ ∪ ran ∞Met ) → ( MetOpen ‘ 𝐷 ) ⊆ 𝒫 ( Base ‘ 𝑇 ) ) |
| 38 | 37 | ex | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → ( 𝐷 ∈ ∪ ran ∞Met → ( MetOpen ‘ 𝐷 ) ⊆ 𝒫 ( Base ‘ 𝑇 ) ) ) |
| 39 | 7 38 | syl5 | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → ( 𝐷 ∈ dom MetOpen → ( MetOpen ‘ 𝐷 ) ⊆ 𝒫 ( Base ‘ 𝑇 ) ) ) |
| 40 | ndmfv | ⊢ ( ¬ 𝐷 ∈ dom MetOpen → ( MetOpen ‘ 𝐷 ) = ∅ ) | |
| 41 | 0ss | ⊢ ∅ ⊆ 𝒫 ( Base ‘ 𝑇 ) | |
| 42 | 40 41 | eqsstrdi | ⊢ ( ¬ 𝐷 ∈ dom MetOpen → ( MetOpen ‘ 𝐷 ) ⊆ 𝒫 ( Base ‘ 𝑇 ) ) |
| 43 | 39 42 | pm2.61d1 | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → ( MetOpen ‘ 𝐷 ) ⊆ 𝒫 ( Base ‘ 𝑇 ) ) |
| 44 | 3 43 | eqsstrid | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → 𝐽 ⊆ 𝒫 ( Base ‘ 𝑇 ) ) |
| 45 | 4 44 | eqsstrrd | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → ( TopSet ‘ 𝑇 ) ⊆ 𝒫 ( Base ‘ 𝑇 ) ) |
| 46 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 47 | eqid | ⊢ ( TopSet ‘ 𝑇 ) = ( TopSet ‘ 𝑇 ) | |
| 48 | 46 47 | topnid | ⊢ ( ( TopSet ‘ 𝑇 ) ⊆ 𝒫 ( Base ‘ 𝑇 ) → ( TopSet ‘ 𝑇 ) = ( TopOpen ‘ 𝑇 ) ) |
| 49 | 45 48 | syl | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → ( TopSet ‘ 𝑇 ) = ( TopOpen ‘ 𝑇 ) ) |
| 50 | 4 49 | eqtrd | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → 𝐽 = ( TopOpen ‘ 𝑇 ) ) |