This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology generated by a normed structure. (Contributed by Mario Carneiro, 3-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tngbas.t | ⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) | |
| tngtset.2 | ⊢ 𝐷 = ( dist ‘ 𝑇 ) | ||
| tngtset.3 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | ||
| Assertion | tngtset | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → 𝐽 = ( TopSet ‘ 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tngbas.t | ⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) | |
| 2 | tngtset.2 | ⊢ 𝐷 = ( dist ‘ 𝑇 ) | |
| 3 | tngtset.3 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 4 | ovex | ⊢ ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) 〉 ) ∈ V | |
| 5 | fvex | ⊢ ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) ∈ V | |
| 6 | tsetid | ⊢ TopSet = Slot ( TopSet ‘ ndx ) | |
| 7 | 6 | setsid | ⊢ ( ( ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) 〉 ) ∈ V ∧ ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) ∈ V ) → ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) = ( TopSet ‘ ( ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) 〉 ) sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) 〉 ) ) ) |
| 8 | 4 5 7 | mp2an | ⊢ ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) = ( TopSet ‘ ( ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) 〉 ) sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) 〉 ) ) |
| 9 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 10 | 1 9 | tngds | ⊢ ( 𝑁 ∈ 𝑊 → ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) = ( dist ‘ 𝑇 ) ) |
| 11 | 2 10 | eqtr4id | ⊢ ( 𝑁 ∈ 𝑊 → 𝐷 = ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) |
| 12 | 11 | adantl | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → 𝐷 = ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) |
| 13 | 12 | fveq2d | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) ) |
| 14 | 3 13 | eqtrid | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → 𝐽 = ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) ) |
| 15 | eqid | ⊢ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) = ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) | |
| 16 | eqid | ⊢ ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) = ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) | |
| 17 | 1 9 15 16 | tngval | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → 𝑇 = ( ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) 〉 ) sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) 〉 ) ) |
| 18 | 17 | fveq2d | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → ( TopSet ‘ 𝑇 ) = ( TopSet ‘ ( ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) 〉 ) sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) 〉 ) ) ) |
| 19 | 8 14 18 | 3eqtr4a | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → 𝐽 = ( TopSet ‘ 𝑇 ) ) |