This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the norm function as the distance to zero. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmfval.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | |
| nmfval.x | ⊢ 𝑋 = ( Base ‘ 𝑊 ) | ||
| nmfval.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| nmfval.d | ⊢ 𝐷 = ( dist ‘ 𝑊 ) | ||
| Assertion | nmfval | ⊢ 𝑁 = ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 𝐷 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmfval.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | |
| 2 | nmfval.x | ⊢ 𝑋 = ( Base ‘ 𝑊 ) | |
| 3 | nmfval.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 4 | nmfval.d | ⊢ 𝐷 = ( dist ‘ 𝑊 ) | |
| 5 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) | |
| 6 | 5 2 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = 𝑋 ) |
| 7 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( dist ‘ 𝑤 ) = ( dist ‘ 𝑊 ) ) | |
| 8 | 7 4 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( dist ‘ 𝑤 ) = 𝐷 ) |
| 9 | eqidd | ⊢ ( 𝑤 = 𝑊 → 𝑥 = 𝑥 ) | |
| 10 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( 0g ‘ 𝑤 ) = ( 0g ‘ 𝑊 ) ) | |
| 11 | 10 3 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( 0g ‘ 𝑤 ) = 0 ) |
| 12 | 8 9 11 | oveq123d | ⊢ ( 𝑤 = 𝑊 → ( 𝑥 ( dist ‘ 𝑤 ) ( 0g ‘ 𝑤 ) ) = ( 𝑥 𝐷 0 ) ) |
| 13 | 6 12 | mpteq12dv | ⊢ ( 𝑤 = 𝑊 → ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( 𝑥 ( dist ‘ 𝑤 ) ( 0g ‘ 𝑤 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 𝐷 0 ) ) ) |
| 14 | df-nm | ⊢ norm = ( 𝑤 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( 𝑥 ( dist ‘ 𝑤 ) ( 0g ‘ 𝑤 ) ) ) ) | |
| 15 | eqid | ⊢ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 𝐷 0 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 𝐷 0 ) ) | |
| 16 | df-ov | ⊢ ( 𝑥 𝐷 0 ) = ( 𝐷 ‘ 〈 𝑥 , 0 〉 ) | |
| 17 | fvrn0 | ⊢ ( 𝐷 ‘ 〈 𝑥 , 0 〉 ) ∈ ( ran 𝐷 ∪ { ∅ } ) | |
| 18 | 16 17 | eqeltri | ⊢ ( 𝑥 𝐷 0 ) ∈ ( ran 𝐷 ∪ { ∅ } ) |
| 19 | 18 | a1i | ⊢ ( 𝑥 ∈ 𝑋 → ( 𝑥 𝐷 0 ) ∈ ( ran 𝐷 ∪ { ∅ } ) ) |
| 20 | 15 19 | fmpti | ⊢ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 𝐷 0 ) ) : 𝑋 ⟶ ( ran 𝐷 ∪ { ∅ } ) |
| 21 | 2 | fvexi | ⊢ 𝑋 ∈ V |
| 22 | 4 | fvexi | ⊢ 𝐷 ∈ V |
| 23 | 22 | rnex | ⊢ ran 𝐷 ∈ V |
| 24 | p0ex | ⊢ { ∅ } ∈ V | |
| 25 | 23 24 | unex | ⊢ ( ran 𝐷 ∪ { ∅ } ) ∈ V |
| 26 | fex2 | ⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 𝐷 0 ) ) : 𝑋 ⟶ ( ran 𝐷 ∪ { ∅ } ) ∧ 𝑋 ∈ V ∧ ( ran 𝐷 ∪ { ∅ } ) ∈ V ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 𝐷 0 ) ) ∈ V ) | |
| 27 | 20 21 25 26 | mp3an | ⊢ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 𝐷 0 ) ) ∈ V |
| 28 | 13 14 27 | fvmpt | ⊢ ( 𝑊 ∈ V → ( norm ‘ 𝑊 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 𝐷 0 ) ) ) |
| 29 | fvprc | ⊢ ( ¬ 𝑊 ∈ V → ( norm ‘ 𝑊 ) = ∅ ) | |
| 30 | mpt0 | ⊢ ( 𝑥 ∈ ∅ ↦ ( 𝑥 𝐷 0 ) ) = ∅ | |
| 31 | 29 30 | eqtr4di | ⊢ ( ¬ 𝑊 ∈ V → ( norm ‘ 𝑊 ) = ( 𝑥 ∈ ∅ ↦ ( 𝑥 𝐷 0 ) ) ) |
| 32 | fvprc | ⊢ ( ¬ 𝑊 ∈ V → ( Base ‘ 𝑊 ) = ∅ ) | |
| 33 | 2 32 | eqtrid | ⊢ ( ¬ 𝑊 ∈ V → 𝑋 = ∅ ) |
| 34 | 33 | mpteq1d | ⊢ ( ¬ 𝑊 ∈ V → ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 𝐷 0 ) ) = ( 𝑥 ∈ ∅ ↦ ( 𝑥 𝐷 0 ) ) ) |
| 35 | 31 34 | eqtr4d | ⊢ ( ¬ 𝑊 ∈ V → ( norm ‘ 𝑊 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 𝐷 0 ) ) ) |
| 36 | 28 35 | pm2.61i | ⊢ ( norm ‘ 𝑊 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 𝐷 0 ) ) |
| 37 | 1 36 | eqtri | ⊢ 𝑁 = ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 𝐷 0 ) ) |