This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology generator function is idempotent. (Contributed by NM, 18-Jul-2006) (Revised by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tgidm | ⊢ ( 𝐵 ∈ 𝑉 → ( topGen ‘ ( topGen ‘ 𝐵 ) ) = ( topGen ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex | ⊢ ( topGen ‘ 𝐵 ) ∈ V | |
| 2 | eltg3 | ⊢ ( ( topGen ‘ 𝐵 ) ∈ V → ( 𝑥 ∈ ( topGen ‘ ( topGen ‘ 𝐵 ) ) ↔ ∃ 𝑦 ( 𝑦 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑥 = ∪ 𝑦 ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( 𝑥 ∈ ( topGen ‘ ( topGen ‘ 𝐵 ) ) ↔ ∃ 𝑦 ( 𝑦 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑥 = ∪ 𝑦 ) ) |
| 4 | uniiun | ⊢ ∪ 𝑦 = ∪ 𝑧 ∈ 𝑦 𝑧 | |
| 5 | simpr | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑦 ⊆ ( topGen ‘ 𝐵 ) ) → 𝑦 ⊆ ( topGen ‘ 𝐵 ) ) | |
| 6 | 5 | sselda | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝑦 ⊆ ( topGen ‘ 𝐵 ) ) ∧ 𝑧 ∈ 𝑦 ) → 𝑧 ∈ ( topGen ‘ 𝐵 ) ) |
| 7 | eltg4i | ⊢ ( 𝑧 ∈ ( topGen ‘ 𝐵 ) → 𝑧 = ∪ ( 𝐵 ∩ 𝒫 𝑧 ) ) | |
| 8 | 6 7 | syl | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝑦 ⊆ ( topGen ‘ 𝐵 ) ) ∧ 𝑧 ∈ 𝑦 ) → 𝑧 = ∪ ( 𝐵 ∩ 𝒫 𝑧 ) ) |
| 9 | 8 | iuneq2dv | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑦 ⊆ ( topGen ‘ 𝐵 ) ) → ∪ 𝑧 ∈ 𝑦 𝑧 = ∪ 𝑧 ∈ 𝑦 ∪ ( 𝐵 ∩ 𝒫 𝑧 ) ) |
| 10 | 4 9 | eqtrid | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑦 ⊆ ( topGen ‘ 𝐵 ) ) → ∪ 𝑦 = ∪ 𝑧 ∈ 𝑦 ∪ ( 𝐵 ∩ 𝒫 𝑧 ) ) |
| 11 | iuncom4 | ⊢ ∪ 𝑧 ∈ 𝑦 ∪ ( 𝐵 ∩ 𝒫 𝑧 ) = ∪ ∪ 𝑧 ∈ 𝑦 ( 𝐵 ∩ 𝒫 𝑧 ) | |
| 12 | 10 11 | eqtrdi | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑦 ⊆ ( topGen ‘ 𝐵 ) ) → ∪ 𝑦 = ∪ ∪ 𝑧 ∈ 𝑦 ( 𝐵 ∩ 𝒫 𝑧 ) ) |
| 13 | inss1 | ⊢ ( 𝐵 ∩ 𝒫 𝑧 ) ⊆ 𝐵 | |
| 14 | 13 | rgenw | ⊢ ∀ 𝑧 ∈ 𝑦 ( 𝐵 ∩ 𝒫 𝑧 ) ⊆ 𝐵 |
| 15 | iunss | ⊢ ( ∪ 𝑧 ∈ 𝑦 ( 𝐵 ∩ 𝒫 𝑧 ) ⊆ 𝐵 ↔ ∀ 𝑧 ∈ 𝑦 ( 𝐵 ∩ 𝒫 𝑧 ) ⊆ 𝐵 ) | |
| 16 | 14 15 | mpbir | ⊢ ∪ 𝑧 ∈ 𝑦 ( 𝐵 ∩ 𝒫 𝑧 ) ⊆ 𝐵 |
| 17 | 16 | a1i | ⊢ ( 𝑦 ⊆ ( topGen ‘ 𝐵 ) → ∪ 𝑧 ∈ 𝑦 ( 𝐵 ∩ 𝒫 𝑧 ) ⊆ 𝐵 ) |
| 18 | eltg3i | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ∪ 𝑧 ∈ 𝑦 ( 𝐵 ∩ 𝒫 𝑧 ) ⊆ 𝐵 ) → ∪ ∪ 𝑧 ∈ 𝑦 ( 𝐵 ∩ 𝒫 𝑧 ) ∈ ( topGen ‘ 𝐵 ) ) | |
| 19 | 17 18 | sylan2 | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑦 ⊆ ( topGen ‘ 𝐵 ) ) → ∪ ∪ 𝑧 ∈ 𝑦 ( 𝐵 ∩ 𝒫 𝑧 ) ∈ ( topGen ‘ 𝐵 ) ) |
| 20 | 12 19 | eqeltrd | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑦 ⊆ ( topGen ‘ 𝐵 ) ) → ∪ 𝑦 ∈ ( topGen ‘ 𝐵 ) ) |
| 21 | eleq1 | ⊢ ( 𝑥 = ∪ 𝑦 → ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ↔ ∪ 𝑦 ∈ ( topGen ‘ 𝐵 ) ) ) | |
| 22 | 20 21 | syl5ibrcom | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑦 ⊆ ( topGen ‘ 𝐵 ) ) → ( 𝑥 = ∪ 𝑦 → 𝑥 ∈ ( topGen ‘ 𝐵 ) ) ) |
| 23 | 22 | expimpd | ⊢ ( 𝐵 ∈ 𝑉 → ( ( 𝑦 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑥 = ∪ 𝑦 ) → 𝑥 ∈ ( topGen ‘ 𝐵 ) ) ) |
| 24 | 23 | exlimdv | ⊢ ( 𝐵 ∈ 𝑉 → ( ∃ 𝑦 ( 𝑦 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑥 = ∪ 𝑦 ) → 𝑥 ∈ ( topGen ‘ 𝐵 ) ) ) |
| 25 | 3 24 | biimtrid | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝑥 ∈ ( topGen ‘ ( topGen ‘ 𝐵 ) ) → 𝑥 ∈ ( topGen ‘ 𝐵 ) ) ) |
| 26 | 25 | ssrdv | ⊢ ( 𝐵 ∈ 𝑉 → ( topGen ‘ ( topGen ‘ 𝐵 ) ) ⊆ ( topGen ‘ 𝐵 ) ) |
| 27 | bastg | ⊢ ( 𝐵 ∈ 𝑉 → 𝐵 ⊆ ( topGen ‘ 𝐵 ) ) | |
| 28 | tgss | ⊢ ( ( ( topGen ‘ 𝐵 ) ∈ V ∧ 𝐵 ⊆ ( topGen ‘ 𝐵 ) ) → ( topGen ‘ 𝐵 ) ⊆ ( topGen ‘ ( topGen ‘ 𝐵 ) ) ) | |
| 29 | 1 27 28 | sylancr | ⊢ ( 𝐵 ∈ 𝑉 → ( topGen ‘ 𝐵 ) ⊆ ( topGen ‘ ( topGen ‘ 𝐵 ) ) ) |
| 30 | 26 29 | eqssd | ⊢ ( 𝐵 ∈ 𝑉 → ( topGen ‘ ( topGen ‘ 𝐵 ) ) = ( topGen ‘ 𝐵 ) ) |