This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open set in a topology generated by a basis is the union of all basic open sets contained in it. (Contributed by Stefan O'Rear, 22-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eltg4i | ⊢ ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → 𝐴 = ∪ ( 𝐵 ∩ 𝒫 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm | ⊢ ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → 𝐵 ∈ dom topGen ) | |
| 2 | eltg | ⊢ ( 𝐵 ∈ dom topGen → ( 𝐴 ∈ ( topGen ‘ 𝐵 ) ↔ 𝐴 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝐴 ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → ( 𝐴 ∈ ( topGen ‘ 𝐵 ) ↔ 𝐴 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝐴 ) ) ) |
| 4 | 3 | ibi | ⊢ ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → 𝐴 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝐴 ) ) |
| 5 | inss2 | ⊢ ( 𝐵 ∩ 𝒫 𝐴 ) ⊆ 𝒫 𝐴 | |
| 6 | 5 | unissi | ⊢ ∪ ( 𝐵 ∩ 𝒫 𝐴 ) ⊆ ∪ 𝒫 𝐴 |
| 7 | unipw | ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
| 8 | 6 7 | sseqtri | ⊢ ∪ ( 𝐵 ∩ 𝒫 𝐴 ) ⊆ 𝐴 |
| 9 | 8 | a1i | ⊢ ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → ∪ ( 𝐵 ∩ 𝒫 𝐴 ) ⊆ 𝐴 ) |
| 10 | 4 9 | eqssd | ⊢ ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → 𝐴 = ∪ ( 𝐵 ∩ 𝒫 𝐴 ) ) |