This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A transfinite induction scheme in "implicit" form where the induction is done on an object derived from the object of interest. (Contributed by Stefan O'Rear, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tfisi.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| tfisi.b | ⊢ ( 𝜑 → 𝑇 ∈ On ) | ||
| tfisi.c | ⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ On ∧ 𝑅 ⊆ 𝑇 ) ∧ ∀ 𝑦 ( 𝑆 ∈ 𝑅 → 𝜒 ) ) → 𝜓 ) | ||
| tfisi.d | ⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) | ||
| tfisi.e | ⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜃 ) ) | ||
| tfisi.f | ⊢ ( 𝑥 = 𝑦 → 𝑅 = 𝑆 ) | ||
| tfisi.g | ⊢ ( 𝑥 = 𝐴 → 𝑅 = 𝑇 ) | ||
| Assertion | tfisi | ⊢ ( 𝜑 → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfisi.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | tfisi.b | ⊢ ( 𝜑 → 𝑇 ∈ On ) | |
| 3 | tfisi.c | ⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ On ∧ 𝑅 ⊆ 𝑇 ) ∧ ∀ 𝑦 ( 𝑆 ∈ 𝑅 → 𝜒 ) ) → 𝜓 ) | |
| 4 | tfisi.d | ⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) | |
| 5 | tfisi.e | ⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜃 ) ) | |
| 6 | tfisi.f | ⊢ ( 𝑥 = 𝑦 → 𝑅 = 𝑆 ) | |
| 7 | tfisi.g | ⊢ ( 𝑥 = 𝐴 → 𝑅 = 𝑇 ) | |
| 8 | ssid | ⊢ 𝑇 ⊆ 𝑇 | |
| 9 | eqid | ⊢ 𝑇 = 𝑇 | |
| 10 | eqeq2 | ⊢ ( 𝑧 = 𝑤 → ( 𝑅 = 𝑧 ↔ 𝑅 = 𝑤 ) ) | |
| 11 | sseq1 | ⊢ ( 𝑧 = 𝑤 → ( 𝑧 ⊆ 𝑇 ↔ 𝑤 ⊆ 𝑇 ) ) | |
| 12 | 11 | anbi2d | ⊢ ( 𝑧 = 𝑤 → ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ↔ ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) ) ) |
| 13 | 12 | imbi1d | ⊢ ( 𝑧 = 𝑤 → ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) → 𝜓 ) ↔ ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜓 ) ) ) |
| 14 | 10 13 | imbi12d | ⊢ ( 𝑧 = 𝑤 → ( ( 𝑅 = 𝑧 → ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) → 𝜓 ) ) ↔ ( 𝑅 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜓 ) ) ) ) |
| 15 | 14 | albidv | ⊢ ( 𝑧 = 𝑤 → ( ∀ 𝑥 ( 𝑅 = 𝑧 → ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) → 𝜓 ) ) ↔ ∀ 𝑥 ( 𝑅 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜓 ) ) ) ) |
| 16 | 6 | eqeq1d | ⊢ ( 𝑥 = 𝑦 → ( 𝑅 = 𝑤 ↔ 𝑆 = 𝑤 ) ) |
| 17 | 4 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜓 ) ↔ ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) |
| 18 | 16 17 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑅 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜓 ) ) ↔ ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ) |
| 19 | 18 | cbvalvw | ⊢ ( ∀ 𝑥 ( 𝑅 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜓 ) ) ↔ ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) |
| 20 | 15 19 | bitrdi | ⊢ ( 𝑧 = 𝑤 → ( ∀ 𝑥 ( 𝑅 = 𝑧 → ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) → 𝜓 ) ) ↔ ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ) |
| 21 | eqeq2 | ⊢ ( 𝑧 = 𝑇 → ( 𝑅 = 𝑧 ↔ 𝑅 = 𝑇 ) ) | |
| 22 | sseq1 | ⊢ ( 𝑧 = 𝑇 → ( 𝑧 ⊆ 𝑇 ↔ 𝑇 ⊆ 𝑇 ) ) | |
| 23 | 22 | anbi2d | ⊢ ( 𝑧 = 𝑇 → ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ↔ ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) ) ) |
| 24 | 23 | imbi1d | ⊢ ( 𝑧 = 𝑇 → ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) → 𝜓 ) ↔ ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜓 ) ) ) |
| 25 | 21 24 | imbi12d | ⊢ ( 𝑧 = 𝑇 → ( ( 𝑅 = 𝑧 → ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) → 𝜓 ) ) ↔ ( 𝑅 = 𝑇 → ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜓 ) ) ) ) |
| 26 | 25 | albidv | ⊢ ( 𝑧 = 𝑇 → ( ∀ 𝑥 ( 𝑅 = 𝑧 → ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) → 𝜓 ) ) ↔ ∀ 𝑥 ( 𝑅 = 𝑇 → ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜓 ) ) ) ) |
| 27 | simp3l | ⊢ ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) → 𝜑 ) | |
| 28 | simp2 | ⊢ ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) → 𝑅 = 𝑧 ) | |
| 29 | simp1l | ⊢ ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) → 𝑧 ∈ On ) | |
| 30 | 28 29 | eqeltrd | ⊢ ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) → 𝑅 ∈ On ) |
| 31 | simp3r | ⊢ ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) → 𝑧 ⊆ 𝑇 ) | |
| 32 | 28 31 | eqsstrd | ⊢ ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) → 𝑅 ⊆ 𝑇 ) |
| 33 | simpl3l | ⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → 𝜑 ) | |
| 34 | simpl1l | ⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → 𝑧 ∈ On ) | |
| 35 | simpr | ⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) | |
| 36 | simpl2 | ⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → 𝑅 = 𝑧 ) | |
| 37 | 35 36 | eleqtrd | ⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑧 ) |
| 38 | onelss | ⊢ ( 𝑧 ∈ On → ( ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑧 → ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑧 ) ) | |
| 39 | 34 37 38 | sylc | ⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑧 ) |
| 40 | simpl3r | ⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → 𝑧 ⊆ 𝑇 ) | |
| 41 | 39 40 | sstrd | ⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) |
| 42 | eqeq2 | ⊢ ( 𝑤 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( 𝑆 = 𝑤 ↔ 𝑆 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ) ) | |
| 43 | sseq1 | ⊢ ( 𝑤 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( 𝑤 ⊆ 𝑇 ↔ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) ) | |
| 44 | 43 | anbi2d | ⊢ ( 𝑤 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) ↔ ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) ) ) |
| 45 | 44 | imbi1d | ⊢ ( 𝑤 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ↔ ( ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) → 𝜒 ) ) ) |
| 46 | 42 45 | imbi12d | ⊢ ( 𝑤 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ↔ ( 𝑆 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) → 𝜒 ) ) ) ) |
| 47 | 46 | albidv | ⊢ ( 𝑤 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ↔ ∀ 𝑦 ( 𝑆 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) → 𝜒 ) ) ) ) |
| 48 | simpl1r | ⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) | |
| 49 | 47 48 37 | rspcdva | ⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → ∀ 𝑦 ( 𝑆 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) → 𝜒 ) ) ) |
| 50 | eqidd | ⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → ⦋ 𝑣 / 𝑥 ⦌ 𝑅 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ) | |
| 51 | nfcv | ⊢ Ⅎ 𝑥 𝑦 | |
| 52 | nfcv | ⊢ Ⅎ 𝑥 𝑆 | |
| 53 | 51 52 6 | csbhypf | ⊢ ( 𝑣 = 𝑦 → ⦋ 𝑣 / 𝑥 ⦌ 𝑅 = 𝑆 ) |
| 54 | 53 | eqcomd | ⊢ ( 𝑣 = 𝑦 → 𝑆 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ) |
| 55 | 54 | equcoms | ⊢ ( 𝑦 = 𝑣 → 𝑆 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ) |
| 56 | 55 | eqeq1d | ⊢ ( 𝑦 = 𝑣 → ( 𝑆 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ↔ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ) ) |
| 57 | nfv | ⊢ Ⅎ 𝑥 𝜒 | |
| 58 | 57 4 | sbhypf | ⊢ ( 𝑣 = 𝑦 → ( [ 𝑣 / 𝑥 ] 𝜓 ↔ 𝜒 ) ) |
| 59 | 58 | bicomd | ⊢ ( 𝑣 = 𝑦 → ( 𝜒 ↔ [ 𝑣 / 𝑥 ] 𝜓 ) ) |
| 60 | 59 | equcoms | ⊢ ( 𝑦 = 𝑣 → ( 𝜒 ↔ [ 𝑣 / 𝑥 ] 𝜓 ) ) |
| 61 | 60 | imbi2d | ⊢ ( 𝑦 = 𝑣 → ( ( ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) → 𝜒 ) ↔ ( ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) → [ 𝑣 / 𝑥 ] 𝜓 ) ) ) |
| 62 | 56 61 | imbi12d | ⊢ ( 𝑦 = 𝑣 → ( ( 𝑆 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) → 𝜒 ) ) ↔ ( ⦋ 𝑣 / 𝑥 ⦌ 𝑅 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) → [ 𝑣 / 𝑥 ] 𝜓 ) ) ) ) |
| 63 | 62 | spvv | ⊢ ( ∀ 𝑦 ( 𝑆 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) → 𝜒 ) ) → ( ⦋ 𝑣 / 𝑥 ⦌ 𝑅 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) → [ 𝑣 / 𝑥 ] 𝜓 ) ) ) |
| 64 | 49 50 63 | sylc | ⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → ( ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) → [ 𝑣 / 𝑥 ] 𝜓 ) ) |
| 65 | 33 41 64 | mp2and | ⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → [ 𝑣 / 𝑥 ] 𝜓 ) |
| 66 | 65 | ex | ⊢ ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) → ( ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 → [ 𝑣 / 𝑥 ] 𝜓 ) ) |
| 67 | 66 | alrimiv | ⊢ ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) → ∀ 𝑣 ( ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 → [ 𝑣 / 𝑥 ] 𝜓 ) ) |
| 68 | 53 | eleq1d | ⊢ ( 𝑣 = 𝑦 → ( ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ↔ 𝑆 ∈ 𝑅 ) ) |
| 69 | 68 58 | imbi12d | ⊢ ( 𝑣 = 𝑦 → ( ( ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 → [ 𝑣 / 𝑥 ] 𝜓 ) ↔ ( 𝑆 ∈ 𝑅 → 𝜒 ) ) ) |
| 70 | 69 | cbvalvw | ⊢ ( ∀ 𝑣 ( ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 → [ 𝑣 / 𝑥 ] 𝜓 ) ↔ ∀ 𝑦 ( 𝑆 ∈ 𝑅 → 𝜒 ) ) |
| 71 | 67 70 | sylib | ⊢ ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) → ∀ 𝑦 ( 𝑆 ∈ 𝑅 → 𝜒 ) ) |
| 72 | 27 30 32 71 3 | syl121anc | ⊢ ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) → 𝜓 ) |
| 73 | 72 | 3exp | ⊢ ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) → ( 𝑅 = 𝑧 → ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) → 𝜓 ) ) ) |
| 74 | 73 | alrimiv | ⊢ ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) → ∀ 𝑥 ( 𝑅 = 𝑧 → ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) → 𝜓 ) ) ) |
| 75 | 74 | ex | ⊢ ( 𝑧 ∈ On → ( ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) → ∀ 𝑥 ( 𝑅 = 𝑧 → ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) → 𝜓 ) ) ) ) |
| 76 | 20 26 75 | tfis3 | ⊢ ( 𝑇 ∈ On → ∀ 𝑥 ( 𝑅 = 𝑇 → ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜓 ) ) ) |
| 77 | 2 76 | syl | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝑅 = 𝑇 → ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜓 ) ) ) |
| 78 | 7 | eqeq1d | ⊢ ( 𝑥 = 𝐴 → ( 𝑅 = 𝑇 ↔ 𝑇 = 𝑇 ) ) |
| 79 | 5 | imbi2d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜓 ) ↔ ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜃 ) ) ) |
| 80 | 78 79 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑅 = 𝑇 → ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜓 ) ) ↔ ( 𝑇 = 𝑇 → ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜃 ) ) ) ) |
| 81 | 80 | spcgv | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( 𝑅 = 𝑇 → ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜓 ) ) → ( 𝑇 = 𝑇 → ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜃 ) ) ) ) |
| 82 | 1 77 81 | sylc | ⊢ ( 𝜑 → ( 𝑇 = 𝑇 → ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜃 ) ) ) |
| 83 | 9 82 | mpi | ⊢ ( 𝜑 → ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜃 ) ) |
| 84 | 83 | expd | ⊢ ( 𝜑 → ( 𝜑 → ( 𝑇 ⊆ 𝑇 → 𝜃 ) ) ) |
| 85 | 84 | pm2.43i | ⊢ ( 𝜑 → ( 𝑇 ⊆ 𝑇 → 𝜃 ) ) |
| 86 | 8 85 | mpi | ⊢ ( 𝜑 → 𝜃 ) |