This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A transfinite induction scheme in "implicit" form where the induction is done on an object derived from the object of interest. (Contributed by Stefan O'Rear, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tfisi.a | |- ( ph -> A e. V ) |
|
| tfisi.b | |- ( ph -> T e. On ) |
||
| tfisi.c | |- ( ( ph /\ ( R e. On /\ R C_ T ) /\ A. y ( S e. R -> ch ) ) -> ps ) |
||
| tfisi.d | |- ( x = y -> ( ps <-> ch ) ) |
||
| tfisi.e | |- ( x = A -> ( ps <-> th ) ) |
||
| tfisi.f | |- ( x = y -> R = S ) |
||
| tfisi.g | |- ( x = A -> R = T ) |
||
| Assertion | tfisi | |- ( ph -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfisi.a | |- ( ph -> A e. V ) |
|
| 2 | tfisi.b | |- ( ph -> T e. On ) |
|
| 3 | tfisi.c | |- ( ( ph /\ ( R e. On /\ R C_ T ) /\ A. y ( S e. R -> ch ) ) -> ps ) |
|
| 4 | tfisi.d | |- ( x = y -> ( ps <-> ch ) ) |
|
| 5 | tfisi.e | |- ( x = A -> ( ps <-> th ) ) |
|
| 6 | tfisi.f | |- ( x = y -> R = S ) |
|
| 7 | tfisi.g | |- ( x = A -> R = T ) |
|
| 8 | ssid | |- T C_ T |
|
| 9 | eqid | |- T = T |
|
| 10 | eqeq2 | |- ( z = w -> ( R = z <-> R = w ) ) |
|
| 11 | sseq1 | |- ( z = w -> ( z C_ T <-> w C_ T ) ) |
|
| 12 | 11 | anbi2d | |- ( z = w -> ( ( ph /\ z C_ T ) <-> ( ph /\ w C_ T ) ) ) |
| 13 | 12 | imbi1d | |- ( z = w -> ( ( ( ph /\ z C_ T ) -> ps ) <-> ( ( ph /\ w C_ T ) -> ps ) ) ) |
| 14 | 10 13 | imbi12d | |- ( z = w -> ( ( R = z -> ( ( ph /\ z C_ T ) -> ps ) ) <-> ( R = w -> ( ( ph /\ w C_ T ) -> ps ) ) ) ) |
| 15 | 14 | albidv | |- ( z = w -> ( A. x ( R = z -> ( ( ph /\ z C_ T ) -> ps ) ) <-> A. x ( R = w -> ( ( ph /\ w C_ T ) -> ps ) ) ) ) |
| 16 | 6 | eqeq1d | |- ( x = y -> ( R = w <-> S = w ) ) |
| 17 | 4 | imbi2d | |- ( x = y -> ( ( ( ph /\ w C_ T ) -> ps ) <-> ( ( ph /\ w C_ T ) -> ch ) ) ) |
| 18 | 16 17 | imbi12d | |- ( x = y -> ( ( R = w -> ( ( ph /\ w C_ T ) -> ps ) ) <-> ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) ) |
| 19 | 18 | cbvalvw | |- ( A. x ( R = w -> ( ( ph /\ w C_ T ) -> ps ) ) <-> A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) |
| 20 | 15 19 | bitrdi | |- ( z = w -> ( A. x ( R = z -> ( ( ph /\ z C_ T ) -> ps ) ) <-> A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) ) |
| 21 | eqeq2 | |- ( z = T -> ( R = z <-> R = T ) ) |
|
| 22 | sseq1 | |- ( z = T -> ( z C_ T <-> T C_ T ) ) |
|
| 23 | 22 | anbi2d | |- ( z = T -> ( ( ph /\ z C_ T ) <-> ( ph /\ T C_ T ) ) ) |
| 24 | 23 | imbi1d | |- ( z = T -> ( ( ( ph /\ z C_ T ) -> ps ) <-> ( ( ph /\ T C_ T ) -> ps ) ) ) |
| 25 | 21 24 | imbi12d | |- ( z = T -> ( ( R = z -> ( ( ph /\ z C_ T ) -> ps ) ) <-> ( R = T -> ( ( ph /\ T C_ T ) -> ps ) ) ) ) |
| 26 | 25 | albidv | |- ( z = T -> ( A. x ( R = z -> ( ( ph /\ z C_ T ) -> ps ) ) <-> A. x ( R = T -> ( ( ph /\ T C_ T ) -> ps ) ) ) ) |
| 27 | simp3l | |- ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) -> ph ) |
|
| 28 | simp2 | |- ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) -> R = z ) |
|
| 29 | simp1l | |- ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) -> z e. On ) |
|
| 30 | 28 29 | eqeltrd | |- ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) -> R e. On ) |
| 31 | simp3r | |- ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) -> z C_ T ) |
|
| 32 | 28 31 | eqsstrd | |- ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) -> R C_ T ) |
| 33 | simpl3l | |- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> ph ) |
|
| 34 | simpl1l | |- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> z e. On ) |
|
| 35 | simpr | |- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> [_ v / x ]_ R e. R ) |
|
| 36 | simpl2 | |- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> R = z ) |
|
| 37 | 35 36 | eleqtrd | |- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> [_ v / x ]_ R e. z ) |
| 38 | onelss | |- ( z e. On -> ( [_ v / x ]_ R e. z -> [_ v / x ]_ R C_ z ) ) |
|
| 39 | 34 37 38 | sylc | |- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> [_ v / x ]_ R C_ z ) |
| 40 | simpl3r | |- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> z C_ T ) |
|
| 41 | 39 40 | sstrd | |- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> [_ v / x ]_ R C_ T ) |
| 42 | eqeq2 | |- ( w = [_ v / x ]_ R -> ( S = w <-> S = [_ v / x ]_ R ) ) |
|
| 43 | sseq1 | |- ( w = [_ v / x ]_ R -> ( w C_ T <-> [_ v / x ]_ R C_ T ) ) |
|
| 44 | 43 | anbi2d | |- ( w = [_ v / x ]_ R -> ( ( ph /\ w C_ T ) <-> ( ph /\ [_ v / x ]_ R C_ T ) ) ) |
| 45 | 44 | imbi1d | |- ( w = [_ v / x ]_ R -> ( ( ( ph /\ w C_ T ) -> ch ) <-> ( ( ph /\ [_ v / x ]_ R C_ T ) -> ch ) ) ) |
| 46 | 42 45 | imbi12d | |- ( w = [_ v / x ]_ R -> ( ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) <-> ( S = [_ v / x ]_ R -> ( ( ph /\ [_ v / x ]_ R C_ T ) -> ch ) ) ) ) |
| 47 | 46 | albidv | |- ( w = [_ v / x ]_ R -> ( A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) <-> A. y ( S = [_ v / x ]_ R -> ( ( ph /\ [_ v / x ]_ R C_ T ) -> ch ) ) ) ) |
| 48 | simpl1r | |- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) |
|
| 49 | 47 48 37 | rspcdva | |- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> A. y ( S = [_ v / x ]_ R -> ( ( ph /\ [_ v / x ]_ R C_ T ) -> ch ) ) ) |
| 50 | eqidd | |- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> [_ v / x ]_ R = [_ v / x ]_ R ) |
|
| 51 | nfcv | |- F/_ x y |
|
| 52 | nfcv | |- F/_ x S |
|
| 53 | 51 52 6 | csbhypf | |- ( v = y -> [_ v / x ]_ R = S ) |
| 54 | 53 | eqcomd | |- ( v = y -> S = [_ v / x ]_ R ) |
| 55 | 54 | equcoms | |- ( y = v -> S = [_ v / x ]_ R ) |
| 56 | 55 | eqeq1d | |- ( y = v -> ( S = [_ v / x ]_ R <-> [_ v / x ]_ R = [_ v / x ]_ R ) ) |
| 57 | nfv | |- F/ x ch |
|
| 58 | 57 4 | sbhypf | |- ( v = y -> ( [ v / x ] ps <-> ch ) ) |
| 59 | 58 | bicomd | |- ( v = y -> ( ch <-> [ v / x ] ps ) ) |
| 60 | 59 | equcoms | |- ( y = v -> ( ch <-> [ v / x ] ps ) ) |
| 61 | 60 | imbi2d | |- ( y = v -> ( ( ( ph /\ [_ v / x ]_ R C_ T ) -> ch ) <-> ( ( ph /\ [_ v / x ]_ R C_ T ) -> [ v / x ] ps ) ) ) |
| 62 | 56 61 | imbi12d | |- ( y = v -> ( ( S = [_ v / x ]_ R -> ( ( ph /\ [_ v / x ]_ R C_ T ) -> ch ) ) <-> ( [_ v / x ]_ R = [_ v / x ]_ R -> ( ( ph /\ [_ v / x ]_ R C_ T ) -> [ v / x ] ps ) ) ) ) |
| 63 | 62 | spvv | |- ( A. y ( S = [_ v / x ]_ R -> ( ( ph /\ [_ v / x ]_ R C_ T ) -> ch ) ) -> ( [_ v / x ]_ R = [_ v / x ]_ R -> ( ( ph /\ [_ v / x ]_ R C_ T ) -> [ v / x ] ps ) ) ) |
| 64 | 49 50 63 | sylc | |- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> ( ( ph /\ [_ v / x ]_ R C_ T ) -> [ v / x ] ps ) ) |
| 65 | 33 41 64 | mp2and | |- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> [ v / x ] ps ) |
| 66 | 65 | ex | |- ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) -> ( [_ v / x ]_ R e. R -> [ v / x ] ps ) ) |
| 67 | 66 | alrimiv | |- ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) -> A. v ( [_ v / x ]_ R e. R -> [ v / x ] ps ) ) |
| 68 | 53 | eleq1d | |- ( v = y -> ( [_ v / x ]_ R e. R <-> S e. R ) ) |
| 69 | 68 58 | imbi12d | |- ( v = y -> ( ( [_ v / x ]_ R e. R -> [ v / x ] ps ) <-> ( S e. R -> ch ) ) ) |
| 70 | 69 | cbvalvw | |- ( A. v ( [_ v / x ]_ R e. R -> [ v / x ] ps ) <-> A. y ( S e. R -> ch ) ) |
| 71 | 67 70 | sylib | |- ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) -> A. y ( S e. R -> ch ) ) |
| 72 | 27 30 32 71 3 | syl121anc | |- ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) -> ps ) |
| 73 | 72 | 3exp | |- ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) -> ( R = z -> ( ( ph /\ z C_ T ) -> ps ) ) ) |
| 74 | 73 | alrimiv | |- ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) -> A. x ( R = z -> ( ( ph /\ z C_ T ) -> ps ) ) ) |
| 75 | 74 | ex | |- ( z e. On -> ( A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) -> A. x ( R = z -> ( ( ph /\ z C_ T ) -> ps ) ) ) ) |
| 76 | 20 26 75 | tfis3 | |- ( T e. On -> A. x ( R = T -> ( ( ph /\ T C_ T ) -> ps ) ) ) |
| 77 | 2 76 | syl | |- ( ph -> A. x ( R = T -> ( ( ph /\ T C_ T ) -> ps ) ) ) |
| 78 | 7 | eqeq1d | |- ( x = A -> ( R = T <-> T = T ) ) |
| 79 | 5 | imbi2d | |- ( x = A -> ( ( ( ph /\ T C_ T ) -> ps ) <-> ( ( ph /\ T C_ T ) -> th ) ) ) |
| 80 | 78 79 | imbi12d | |- ( x = A -> ( ( R = T -> ( ( ph /\ T C_ T ) -> ps ) ) <-> ( T = T -> ( ( ph /\ T C_ T ) -> th ) ) ) ) |
| 81 | 80 | spcgv | |- ( A e. V -> ( A. x ( R = T -> ( ( ph /\ T C_ T ) -> ps ) ) -> ( T = T -> ( ( ph /\ T C_ T ) -> th ) ) ) ) |
| 82 | 1 77 81 | sylc | |- ( ph -> ( T = T -> ( ( ph /\ T C_ T ) -> th ) ) ) |
| 83 | 9 82 | mpi | |- ( ph -> ( ( ph /\ T C_ T ) -> th ) ) |
| 84 | 83 | expd | |- ( ph -> ( ph -> ( T C_ T -> th ) ) ) |
| 85 | 84 | pm2.43i | |- ( ph -> ( T C_ T -> th ) ) |
| 86 | 8 85 | mpi | |- ( ph -> th ) |