This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf . (Contributed by Raph Levien, 10-Apr-2004) (Proof shortened by Wolf Lammen, 25-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbhypf.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| sbhypf.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | sbhypf | ⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbhypf.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| 2 | sbhypf.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | 2 | sbimi | ⊢ ( [ 𝑦 / 𝑥 ] 𝑥 = 𝐴 → [ 𝑦 / 𝑥 ] ( 𝜑 ↔ 𝜓 ) ) |
| 4 | eqsb1 | ⊢ ( [ 𝑦 / 𝑥 ] 𝑥 = 𝐴 ↔ 𝑦 = 𝐴 ) | |
| 5 | 1 | sbf | ⊢ ( [ 𝑦 / 𝑥 ] 𝜓 ↔ 𝜓 ) |
| 6 | 5 | sblbis | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ↔ 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
| 7 | 3 4 6 | 3imtr3i | ⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |