This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A terminal category is a terminal object of the category of small categories. (Contributed by Zhi Wang, 17-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | termcterm.e | |- E = ( CatCat ` U ) |
|
| termcterm.u | |- ( ph -> U e. V ) |
||
| termcterm.c | |- ( ph -> C e. U ) |
||
| termcterm.t | |- ( ph -> C e. TermCat ) |
||
| Assertion | termcterm | |- ( ph -> C e. ( TermO ` E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcterm.e | |- E = ( CatCat ` U ) |
|
| 2 | termcterm.u | |- ( ph -> U e. V ) |
|
| 3 | termcterm.c | |- ( ph -> C e. U ) |
|
| 4 | termcterm.t | |- ( ph -> C e. TermCat ) |
|
| 5 | simpr | |- ( ( ph /\ d e. ( Base ` E ) ) -> d e. ( Base ` E ) ) |
|
| 6 | eqid | |- ( Base ` E ) = ( Base ` E ) |
|
| 7 | 1 6 2 | catcbas | |- ( ph -> ( Base ` E ) = ( U i^i Cat ) ) |
| 8 | 7 | adantr | |- ( ( ph /\ d e. ( Base ` E ) ) -> ( Base ` E ) = ( U i^i Cat ) ) |
| 9 | 5 8 | eleqtrd | |- ( ( ph /\ d e. ( Base ` E ) ) -> d e. ( U i^i Cat ) ) |
| 10 | 9 | elin2d | |- ( ( ph /\ d e. ( Base ` E ) ) -> d e. Cat ) |
| 11 | 4 | adantr | |- ( ( ph /\ d e. ( Base ` E ) ) -> C e. TermCat ) |
| 12 | 10 11 | functermceu | |- ( ( ph /\ d e. ( Base ` E ) ) -> E! f f e. ( d Func C ) ) |
| 13 | 2 | adantr | |- ( ( ph /\ d e. ( Base ` E ) ) -> U e. V ) |
| 14 | eqid | |- ( Hom ` E ) = ( Hom ` E ) |
|
| 15 | 4 | termccd | |- ( ph -> C e. Cat ) |
| 16 | 3 15 | elind | |- ( ph -> C e. ( U i^i Cat ) ) |
| 17 | 16 7 | eleqtrrd | |- ( ph -> C e. ( Base ` E ) ) |
| 18 | 17 | adantr | |- ( ( ph /\ d e. ( Base ` E ) ) -> C e. ( Base ` E ) ) |
| 19 | 1 6 13 14 5 18 | catchom | |- ( ( ph /\ d e. ( Base ` E ) ) -> ( d ( Hom ` E ) C ) = ( d Func C ) ) |
| 20 | 19 | eleq2d | |- ( ( ph /\ d e. ( Base ` E ) ) -> ( f e. ( d ( Hom ` E ) C ) <-> f e. ( d Func C ) ) ) |
| 21 | 20 | eubidv | |- ( ( ph /\ d e. ( Base ` E ) ) -> ( E! f f e. ( d ( Hom ` E ) C ) <-> E! f f e. ( d Func C ) ) ) |
| 22 | 12 21 | mpbird | |- ( ( ph /\ d e. ( Base ` E ) ) -> E! f f e. ( d ( Hom ` E ) C ) ) |
| 23 | 22 | ralrimiva | |- ( ph -> A. d e. ( Base ` E ) E! f f e. ( d ( Hom ` E ) C ) ) |
| 24 | 1 | catccat | |- ( U e. V -> E e. Cat ) |
| 25 | 2 24 | syl | |- ( ph -> E e. Cat ) |
| 26 | 6 14 25 17 | istermo | |- ( ph -> ( C e. ( TermO ` E ) <-> A. d e. ( Base ` E ) E! f f e. ( d ( Hom ` E ) C ) ) ) |
| 27 | 23 26 | mpbird | |- ( ph -> C e. ( TermO ` E ) ) |