This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There exists a unique functor to a terminal category. (Contributed by Zhi Wang, 17-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | functermceu.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| functermceu.d | ⊢ ( 𝜑 → 𝐷 ∈ TermCat ) | ||
| Assertion | functermceu | ⊢ ( 𝜑 → ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | functermceu.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 2 | functermceu.d | ⊢ ( 𝜑 → 𝐷 ∈ TermCat ) | |
| 3 | opex | ⊢ 〈 ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑦 ) ) ) ) 〉 ∈ V | |
| 4 | 3 | a1i | ⊢ ( 𝜑 → 〈 ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑦 ) ) ) ) 〉 ∈ V ) |
| 5 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 7 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 8 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 9 | eqid | ⊢ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) = ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) | |
| 10 | eqid | ⊢ ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑦 ) ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑦 ) ) ) ) | |
| 11 | 1 2 5 6 7 8 9 10 | functermc2 | ⊢ ( 𝜑 → ( 𝐶 Func 𝐷 ) = { 〈 ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑦 ) ) ) ) 〉 } ) |
| 12 | sneq | ⊢ ( 𝑓 = 〈 ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑦 ) ) ) ) 〉 → { 𝑓 } = { 〈 ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑦 ) ) ) ) 〉 } ) | |
| 13 | 12 | eqeq2d | ⊢ ( 𝑓 = 〈 ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑦 ) ) ) ) 〉 → ( ( 𝐶 Func 𝐷 ) = { 𝑓 } ↔ ( 𝐶 Func 𝐷 ) = { 〈 ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑦 ) ) ) ) 〉 } ) ) |
| 14 | 4 11 13 | spcedv | ⊢ ( 𝜑 → ∃ 𝑓 ( 𝐶 Func 𝐷 ) = { 𝑓 } ) |
| 15 | eusn | ⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) ↔ ∃ 𝑓 ( 𝐶 Func 𝐷 ) = { 𝑓 } ) | |
| 16 | 14 15 | sylibr | ⊢ ( 𝜑 → ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) |