This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The hom-set of a terminal category is a singleton of the identity morphism. (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | termchom.c | ⊢ ( 𝜑 → 𝐶 ∈ TermCat ) | |
| termchom.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| termchom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| termchom.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| termchom.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| termchom.i | ⊢ 1 = ( Id ‘ 𝐶 ) | ||
| Assertion | termchom | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = { ( 1 ‘ 𝑋 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termchom.c | ⊢ ( 𝜑 → 𝐶 ∈ TermCat ) | |
| 2 | termchom.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | termchom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 4 | termchom.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 5 | termchom.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 6 | termchom.i | ⊢ 1 = ( Id ‘ 𝐶 ) | |
| 7 | 1 2 3 4 5 | termchomn0 | ⊢ ( 𝜑 → ¬ ( 𝑋 𝐻 𝑌 ) = ∅ ) |
| 8 | neq0 | ⊢ ( ¬ ( 𝑋 𝐻 𝑌 ) = ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 9 | 7 8 | sylib | ⊢ ( 𝜑 → ∃ 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 10 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑋 ∈ 𝐵 ) |
| 11 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑌 ∈ 𝐵 ) |
| 12 | simpr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 13 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝐶 ∈ TermCat ) |
| 14 | 13 | termcthind | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝐶 ∈ ThinCat ) |
| 15 | 10 11 12 2 5 14 | thinchom | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → ( 𝑋 𝐻 𝑌 ) = { 𝑓 } ) |
| 16 | 13 2 10 11 5 12 6 | termcid | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑓 = ( 1 ‘ 𝑋 ) ) |
| 17 | 16 | sneqd | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → { 𝑓 } = { ( 1 ‘ 𝑋 ) } ) |
| 18 | 15 17 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → ( 𝑋 𝐻 𝑌 ) = { ( 1 ‘ 𝑋 ) } ) |
| 19 | 9 18 | exlimddv | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = { ( 1 ‘ 𝑋 ) } ) |