This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fsn2.1 | ⊢ 𝐴 ∈ V | |
| Assertion | fsn2 | ⊢ ( 𝐹 : { 𝐴 } ⟶ 𝐵 ↔ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsn2.1 | ⊢ 𝐴 ∈ V | |
| 2 | 1 | snid | ⊢ 𝐴 ∈ { 𝐴 } |
| 3 | ffvelcdm | ⊢ ( ( 𝐹 : { 𝐴 } ⟶ 𝐵 ∧ 𝐴 ∈ { 𝐴 } ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ) | |
| 4 | 2 3 | mpan2 | ⊢ ( 𝐹 : { 𝐴 } ⟶ 𝐵 → ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ) |
| 5 | ffn | ⊢ ( 𝐹 : { 𝐴 } ⟶ 𝐵 → 𝐹 Fn { 𝐴 } ) | |
| 6 | dffn3 | ⊢ ( 𝐹 Fn { 𝐴 } ↔ 𝐹 : { 𝐴 } ⟶ ran 𝐹 ) | |
| 7 | 6 | biimpi | ⊢ ( 𝐹 Fn { 𝐴 } → 𝐹 : { 𝐴 } ⟶ ran 𝐹 ) |
| 8 | imadmrn | ⊢ ( 𝐹 “ dom 𝐹 ) = ran 𝐹 | |
| 9 | fndm | ⊢ ( 𝐹 Fn { 𝐴 } → dom 𝐹 = { 𝐴 } ) | |
| 10 | 9 | imaeq2d | ⊢ ( 𝐹 Fn { 𝐴 } → ( 𝐹 “ dom 𝐹 ) = ( 𝐹 “ { 𝐴 } ) ) |
| 11 | 8 10 | eqtr3id | ⊢ ( 𝐹 Fn { 𝐴 } → ran 𝐹 = ( 𝐹 “ { 𝐴 } ) ) |
| 12 | fnsnfv | ⊢ ( ( 𝐹 Fn { 𝐴 } ∧ 𝐴 ∈ { 𝐴 } ) → { ( 𝐹 ‘ 𝐴 ) } = ( 𝐹 “ { 𝐴 } ) ) | |
| 13 | 2 12 | mpan2 | ⊢ ( 𝐹 Fn { 𝐴 } → { ( 𝐹 ‘ 𝐴 ) } = ( 𝐹 “ { 𝐴 } ) ) |
| 14 | 11 13 | eqtr4d | ⊢ ( 𝐹 Fn { 𝐴 } → ran 𝐹 = { ( 𝐹 ‘ 𝐴 ) } ) |
| 15 | 14 | feq3d | ⊢ ( 𝐹 Fn { 𝐴 } → ( 𝐹 : { 𝐴 } ⟶ ran 𝐹 ↔ 𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } ) ) |
| 16 | 7 15 | mpbid | ⊢ ( 𝐹 Fn { 𝐴 } → 𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } ) |
| 17 | 5 16 | syl | ⊢ ( 𝐹 : { 𝐴 } ⟶ 𝐵 → 𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } ) |
| 18 | 4 17 | jca | ⊢ ( 𝐹 : { 𝐴 } ⟶ 𝐵 → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } ) ) |
| 19 | snssi | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 → { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝐵 ) | |
| 20 | fss | ⊢ ( ( 𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } ∧ { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝐵 ) → 𝐹 : { 𝐴 } ⟶ 𝐵 ) | |
| 21 | 20 | ancoms | ⊢ ( ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝐵 ∧ 𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } ) → 𝐹 : { 𝐴 } ⟶ 𝐵 ) |
| 22 | 19 21 | sylan | ⊢ ( ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } ) → 𝐹 : { 𝐴 } ⟶ 𝐵 ) |
| 23 | 18 22 | impbii | ⊢ ( 𝐹 : { 𝐴 } ⟶ 𝐵 ↔ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } ) ) |
| 24 | fvex | ⊢ ( 𝐹 ‘ 𝐴 ) ∈ V | |
| 25 | 1 24 | fsn | ⊢ ( 𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } ↔ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) |
| 26 | 25 | anbi2i | ⊢ ( ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } ) ↔ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) ) |
| 27 | 23 26 | bitri | ⊢ ( 𝐹 : { 𝐴 } ⟶ 𝐵 ↔ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) ) |