This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The isomorphism between terminal categories is unique. (Contributed by Zhi Wang, 26-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | termcciso.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| termcciso.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| termcciso.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| termcciso.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| termcciso.t | ⊢ ( 𝜑 → 𝑋 ∈ TermCat ) | ||
| termccisoeu.y | ⊢ ( 𝜑 → 𝑌 ∈ TermCat ) | ||
| Assertion | termccisoeu | ⊢ ( 𝜑 → ∃! 𝑓 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcciso.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| 2 | termcciso.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | termcciso.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 4 | termcciso.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 5 | termcciso.t | ⊢ ( 𝜑 → 𝑋 ∈ TermCat ) | |
| 6 | termccisoeu.y | ⊢ ( 𝜑 → 𝑌 ∈ TermCat ) | |
| 7 | 1 2 | elbasfv | ⊢ ( 𝑋 ∈ 𝐵 → 𝑈 ∈ V ) |
| 8 | 3 7 | syl | ⊢ ( 𝜑 → 𝑈 ∈ V ) |
| 9 | 1 | catccat | ⊢ ( 𝑈 ∈ V → 𝐶 ∈ Cat ) |
| 10 | 8 9 | syl | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 11 | 1 2 8 | catcbas | ⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Cat ) ) |
| 12 | 3 11 | eleqtrd | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑈 ∩ Cat ) ) |
| 13 | 12 | elin1d | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) |
| 14 | 1 8 13 5 | termcterm | ⊢ ( 𝜑 → 𝑋 ∈ ( TermO ‘ 𝐶 ) ) |
| 15 | 4 11 | eleqtrd | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑈 ∩ Cat ) ) |
| 16 | 15 | elin1d | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) |
| 17 | 1 8 16 6 | termcterm | ⊢ ( 𝜑 → 𝑌 ∈ ( TermO ‘ 𝐶 ) ) |
| 18 | 10 14 17 | termoeu1 | ⊢ ( 𝜑 → ∃! 𝑓 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) |