This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There exists a unique disjointified arrow in a terminal category. (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | termcarweu | ⊢ ( 𝐶 ∈ TermCat → ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( 𝐶 ∈ TermCat → 𝐶 ∈ TermCat ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 3 | 1 2 | termcbas | ⊢ ( 𝐶 ∈ TermCat → ∃ 𝑥 ( Base ‘ 𝐶 ) = { 𝑥 } ) |
| 4 | eqid | ⊢ ( Homa ‘ 𝐶 ) = ( Homa ‘ 𝐶 ) | |
| 5 | 1 | adantr | ⊢ ( ( 𝐶 ∈ TermCat ∧ ( Base ‘ 𝐶 ) = { 𝑥 } ) → 𝐶 ∈ TermCat ) |
| 6 | 5 | termccd | ⊢ ( ( 𝐶 ∈ TermCat ∧ ( Base ‘ 𝐶 ) = { 𝑥 } ) → 𝐶 ∈ Cat ) |
| 7 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 8 | vsnid | ⊢ 𝑥 ∈ { 𝑥 } | |
| 9 | simpr | ⊢ ( ( 𝐶 ∈ TermCat ∧ ( Base ‘ 𝐶 ) = { 𝑥 } ) → ( Base ‘ 𝐶 ) = { 𝑥 } ) | |
| 10 | 8 9 | eleqtrrid | ⊢ ( ( 𝐶 ∈ TermCat ∧ ( Base ‘ 𝐶 ) = { 𝑥 } ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 11 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 12 | 2 7 11 6 10 | catidcl | ⊢ ( ( 𝐶 ∈ TermCat ∧ ( Base ‘ 𝐶 ) = { 𝑥 } ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 13 | 4 2 6 7 10 10 12 | elhomai2 | ⊢ ( ( 𝐶 ∈ TermCat ∧ ( Base ‘ 𝐶 ) = { 𝑥 } ) → 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) 〉 ∈ ( 𝑥 ( Homa ‘ 𝐶 ) 𝑥 ) ) |
| 14 | eqid | ⊢ ( Arrow ‘ 𝐶 ) = ( Arrow ‘ 𝐶 ) | |
| 15 | 14 | arwdmcd | ⊢ ( 𝑎 ∈ ( Arrow ‘ 𝐶 ) → 𝑎 = 〈 ( doma ‘ 𝑎 ) , ( coda ‘ 𝑎 ) , ( 2nd ‘ 𝑎 ) 〉 ) |
| 16 | 15 | adantl | ⊢ ( ( ( 𝐶 ∈ TermCat ∧ ( Base ‘ 𝐶 ) = { 𝑥 } ) ∧ 𝑎 ∈ ( Arrow ‘ 𝐶 ) ) → 𝑎 = 〈 ( doma ‘ 𝑎 ) , ( coda ‘ 𝑎 ) , ( 2nd ‘ 𝑎 ) 〉 ) |
| 17 | 5 | adantr | ⊢ ( ( ( 𝐶 ∈ TermCat ∧ ( Base ‘ 𝐶 ) = { 𝑥 } ) ∧ 𝑎 ∈ ( Arrow ‘ 𝐶 ) ) → 𝐶 ∈ TermCat ) |
| 18 | 14 2 | arwdm | ⊢ ( 𝑎 ∈ ( Arrow ‘ 𝐶 ) → ( doma ‘ 𝑎 ) ∈ ( Base ‘ 𝐶 ) ) |
| 19 | 18 | adantl | ⊢ ( ( ( 𝐶 ∈ TermCat ∧ ( Base ‘ 𝐶 ) = { 𝑥 } ) ∧ 𝑎 ∈ ( Arrow ‘ 𝐶 ) ) → ( doma ‘ 𝑎 ) ∈ ( Base ‘ 𝐶 ) ) |
| 20 | 10 | adantr | ⊢ ( ( ( 𝐶 ∈ TermCat ∧ ( Base ‘ 𝐶 ) = { 𝑥 } ) ∧ 𝑎 ∈ ( Arrow ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 21 | 17 2 19 20 | termcbasmo | ⊢ ( ( ( 𝐶 ∈ TermCat ∧ ( Base ‘ 𝐶 ) = { 𝑥 } ) ∧ 𝑎 ∈ ( Arrow ‘ 𝐶 ) ) → ( doma ‘ 𝑎 ) = 𝑥 ) |
| 22 | 14 2 | arwcd | ⊢ ( 𝑎 ∈ ( Arrow ‘ 𝐶 ) → ( coda ‘ 𝑎 ) ∈ ( Base ‘ 𝐶 ) ) |
| 23 | 22 | adantl | ⊢ ( ( ( 𝐶 ∈ TermCat ∧ ( Base ‘ 𝐶 ) = { 𝑥 } ) ∧ 𝑎 ∈ ( Arrow ‘ 𝐶 ) ) → ( coda ‘ 𝑎 ) ∈ ( Base ‘ 𝐶 ) ) |
| 24 | 17 2 23 20 | termcbasmo | ⊢ ( ( ( 𝐶 ∈ TermCat ∧ ( Base ‘ 𝐶 ) = { 𝑥 } ) ∧ 𝑎 ∈ ( Arrow ‘ 𝐶 ) ) → ( coda ‘ 𝑎 ) = 𝑥 ) |
| 25 | 14 7 | arwhom | ⊢ ( 𝑎 ∈ ( Arrow ‘ 𝐶 ) → ( 2nd ‘ 𝑎 ) ∈ ( ( doma ‘ 𝑎 ) ( Hom ‘ 𝐶 ) ( coda ‘ 𝑎 ) ) ) |
| 26 | 25 | adantl | ⊢ ( ( ( 𝐶 ∈ TermCat ∧ ( Base ‘ 𝐶 ) = { 𝑥 } ) ∧ 𝑎 ∈ ( Arrow ‘ 𝐶 ) ) → ( 2nd ‘ 𝑎 ) ∈ ( ( doma ‘ 𝑎 ) ( Hom ‘ 𝐶 ) ( coda ‘ 𝑎 ) ) ) |
| 27 | 12 | adantr | ⊢ ( ( ( 𝐶 ∈ TermCat ∧ ( Base ‘ 𝐶 ) = { 𝑥 } ) ∧ 𝑎 ∈ ( Arrow ‘ 𝐶 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 28 | 17 2 19 23 7 26 20 20 27 | termchommo | ⊢ ( ( ( 𝐶 ∈ TermCat ∧ ( Base ‘ 𝐶 ) = { 𝑥 } ) ∧ 𝑎 ∈ ( Arrow ‘ 𝐶 ) ) → ( 2nd ‘ 𝑎 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) |
| 29 | 21 24 28 | oteq123d | ⊢ ( ( ( 𝐶 ∈ TermCat ∧ ( Base ‘ 𝐶 ) = { 𝑥 } ) ∧ 𝑎 ∈ ( Arrow ‘ 𝐶 ) ) → 〈 ( doma ‘ 𝑎 ) , ( coda ‘ 𝑎 ) , ( 2nd ‘ 𝑎 ) 〉 = 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) 〉 ) |
| 30 | 16 29 | eqtrd | ⊢ ( ( ( 𝐶 ∈ TermCat ∧ ( Base ‘ 𝐶 ) = { 𝑥 } ) ∧ 𝑎 ∈ ( Arrow ‘ 𝐶 ) ) → 𝑎 = 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) 〉 ) |
| 31 | simpr | ⊢ ( ( ( 𝐶 ∈ TermCat ∧ ( Base ‘ 𝐶 ) = { 𝑥 } ) ∧ 𝑎 = 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) 〉 ) → 𝑎 = 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) 〉 ) | |
| 32 | 14 4 | homarw | ⊢ ( 𝑥 ( Homa ‘ 𝐶 ) 𝑥 ) ⊆ ( Arrow ‘ 𝐶 ) |
| 33 | 32 13 | sselid | ⊢ ( ( 𝐶 ∈ TermCat ∧ ( Base ‘ 𝐶 ) = { 𝑥 } ) → 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) 〉 ∈ ( Arrow ‘ 𝐶 ) ) |
| 34 | 33 | adantr | ⊢ ( ( ( 𝐶 ∈ TermCat ∧ ( Base ‘ 𝐶 ) = { 𝑥 } ) ∧ 𝑎 = 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) 〉 ) → 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) 〉 ∈ ( Arrow ‘ 𝐶 ) ) |
| 35 | 31 34 | eqeltrd | ⊢ ( ( ( 𝐶 ∈ TermCat ∧ ( Base ‘ 𝐶 ) = { 𝑥 } ) ∧ 𝑎 = 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) 〉 ) → 𝑎 ∈ ( Arrow ‘ 𝐶 ) ) |
| 36 | 30 35 | impbida | ⊢ ( ( 𝐶 ∈ TermCat ∧ ( Base ‘ 𝐶 ) = { 𝑥 } ) → ( 𝑎 ∈ ( Arrow ‘ 𝐶 ) ↔ 𝑎 = 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) 〉 ) ) |
| 37 | 36 | alrimiv | ⊢ ( ( 𝐶 ∈ TermCat ∧ ( Base ‘ 𝐶 ) = { 𝑥 } ) → ∀ 𝑎 ( 𝑎 ∈ ( Arrow ‘ 𝐶 ) ↔ 𝑎 = 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) 〉 ) ) |
| 38 | eqeq2 | ⊢ ( 𝑏 = 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) 〉 → ( 𝑎 = 𝑏 ↔ 𝑎 = 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) 〉 ) ) | |
| 39 | 38 | bibi2d | ⊢ ( 𝑏 = 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) 〉 → ( ( 𝑎 ∈ ( Arrow ‘ 𝐶 ) ↔ 𝑎 = 𝑏 ) ↔ ( 𝑎 ∈ ( Arrow ‘ 𝐶 ) ↔ 𝑎 = 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) 〉 ) ) ) |
| 40 | 39 | albidv | ⊢ ( 𝑏 = 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) 〉 → ( ∀ 𝑎 ( 𝑎 ∈ ( Arrow ‘ 𝐶 ) ↔ 𝑎 = 𝑏 ) ↔ ∀ 𝑎 ( 𝑎 ∈ ( Arrow ‘ 𝐶 ) ↔ 𝑎 = 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) 〉 ) ) ) |
| 41 | 13 37 40 | spcedv | ⊢ ( ( 𝐶 ∈ TermCat ∧ ( Base ‘ 𝐶 ) = { 𝑥 } ) → ∃ 𝑏 ∀ 𝑎 ( 𝑎 ∈ ( Arrow ‘ 𝐶 ) ↔ 𝑎 = 𝑏 ) ) |
| 42 | 3 41 | exlimddv | ⊢ ( 𝐶 ∈ TermCat → ∃ 𝑏 ∀ 𝑎 ( 𝑎 ∈ ( Arrow ‘ 𝐶 ) ↔ 𝑎 = 𝑏 ) ) |
| 43 | eu6im | ⊢ ( ∃ 𝑏 ∀ 𝑎 ( 𝑎 ∈ ( Arrow ‘ 𝐶 ) ↔ 𝑎 = 𝑏 ) → ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ) | |
| 44 | 42 43 | syl | ⊢ ( 𝐶 ∈ TermCat → ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ) |