This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A hom-set is a subset of the collection of all arrows. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | arwrcl.a | ⊢ 𝐴 = ( Arrow ‘ 𝐶 ) | |
| arwhoma.h | ⊢ 𝐻 = ( Homa ‘ 𝐶 ) | ||
| Assertion | homarw | ⊢ ( 𝑋 𝐻 𝑌 ) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | arwrcl.a | ⊢ 𝐴 = ( Arrow ‘ 𝐶 ) | |
| 2 | arwhoma.h | ⊢ 𝐻 = ( Homa ‘ 𝐶 ) | |
| 3 | ovssunirn | ⊢ ( 𝑋 𝐻 𝑌 ) ⊆ ∪ ran 𝐻 | |
| 4 | 1 2 | arwval | ⊢ 𝐴 = ∪ ran 𝐻 |
| 5 | 3 4 | sseqtrri | ⊢ ( 𝑋 𝐻 𝑌 ) ⊆ 𝐴 |