This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a structure has a unique disjointified arrow, then the structure is a thin category. (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | arweuthinc | ⊢ ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) → 𝐶 ∈ ThinCat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd | ⊢ ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) ) | |
| 2 | eqidd | ⊢ ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) → ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) ) | |
| 3 | eqeq1 | ⊢ ( 𝑎 = 〈 𝑥 , 𝑦 , 𝑓 〉 → ( 𝑎 = 𝑏 ↔ 〈 𝑥 , 𝑦 , 𝑓 〉 = 𝑏 ) ) | |
| 4 | eqeq2 | ⊢ ( 𝑏 = 〈 𝑥 , 𝑦 , 𝑔 〉 → ( 〈 𝑥 , 𝑦 , 𝑓 〉 = 𝑏 ↔ 〈 𝑥 , 𝑦 , 𝑓 〉 = 〈 𝑥 , 𝑦 , 𝑔 〉 ) ) | |
| 5 | eumo | ⊢ ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) → ∃* 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ) | |
| 6 | 5 | ad2antrr | ⊢ ( ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ∃* 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ) |
| 7 | moel | ⊢ ( ∃* 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ↔ ∀ 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∀ 𝑏 ∈ ( Arrow ‘ 𝐶 ) 𝑎 = 𝑏 ) | |
| 8 | 6 7 | sylib | ⊢ ( ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ∀ 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∀ 𝑏 ∈ ( Arrow ‘ 𝐶 ) 𝑎 = 𝑏 ) |
| 9 | eqid | ⊢ ( Arrow ‘ 𝐶 ) = ( Arrow ‘ 𝐶 ) | |
| 10 | eqid | ⊢ ( Homa ‘ 𝐶 ) = ( Homa ‘ 𝐶 ) | |
| 11 | 9 10 | homarw | ⊢ ( 𝑥 ( Homa ‘ 𝐶 ) 𝑦 ) ⊆ ( Arrow ‘ 𝐶 ) |
| 12 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 13 | euex | ⊢ ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) → ∃ 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ) | |
| 14 | 9 | arwrcl | ⊢ ( 𝑎 ∈ ( Arrow ‘ 𝐶 ) → 𝐶 ∈ Cat ) |
| 15 | 14 | exlimiv | ⊢ ( ∃ 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) → 𝐶 ∈ Cat ) |
| 16 | 13 15 | syl | ⊢ ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) → 𝐶 ∈ Cat ) |
| 17 | 16 | ad2antrr | ⊢ ( ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → 𝐶 ∈ Cat ) |
| 18 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 19 | simplrl | ⊢ ( ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 20 | simplrr | ⊢ ( ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) | |
| 21 | simprl | ⊢ ( ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) | |
| 22 | 10 12 17 18 19 20 21 | elhomai2 | ⊢ ( ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → 〈 𝑥 , 𝑦 , 𝑓 〉 ∈ ( 𝑥 ( Homa ‘ 𝐶 ) 𝑦 ) ) |
| 23 | 11 22 | sselid | ⊢ ( ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → 〈 𝑥 , 𝑦 , 𝑓 〉 ∈ ( Arrow ‘ 𝐶 ) ) |
| 24 | simprr | ⊢ ( ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) | |
| 25 | 10 12 17 18 19 20 24 | elhomai2 | ⊢ ( ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → 〈 𝑥 , 𝑦 , 𝑔 〉 ∈ ( 𝑥 ( Homa ‘ 𝐶 ) 𝑦 ) ) |
| 26 | 11 25 | sselid | ⊢ ( ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → 〈 𝑥 , 𝑦 , 𝑔 〉 ∈ ( Arrow ‘ 𝐶 ) ) |
| 27 | 3 4 8 23 26 | rspc2dv | ⊢ ( ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → 〈 𝑥 , 𝑦 , 𝑓 〉 = 〈 𝑥 , 𝑦 , 𝑔 〉 ) |
| 28 | vex | ⊢ 𝑥 ∈ V | |
| 29 | vex | ⊢ 𝑦 ∈ V | |
| 30 | vex | ⊢ 𝑓 ∈ V | |
| 31 | 28 29 30 | otth | ⊢ ( 〈 𝑥 , 𝑦 , 𝑓 〉 = 〈 𝑥 , 𝑦 , 𝑔 〉 ↔ ( 𝑥 = 𝑥 ∧ 𝑦 = 𝑦 ∧ 𝑓 = 𝑔 ) ) |
| 32 | 31 | simp3bi | ⊢ ( 〈 𝑥 , 𝑦 , 𝑓 〉 = 〈 𝑥 , 𝑦 , 𝑔 〉 → 𝑓 = 𝑔 ) |
| 33 | 27 32 | syl | ⊢ ( ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → 𝑓 = 𝑔 ) |
| 34 | 33 | ralrimivva | ⊢ ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) 𝑓 = 𝑔 ) |
| 35 | moel | ⊢ ( ∃* 𝑓 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↔ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) 𝑓 = 𝑔 ) | |
| 36 | 34 35 | sylibr | ⊢ ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ∃* 𝑓 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 37 | 1 2 36 16 | isthincd | ⊢ ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) → 𝐶 ∈ ThinCat ) |