This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: All morphisms of a terminal category are identical. (Contributed by Zhi Wang, 16-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | termcbas.c | ⊢ ( 𝜑 → 𝐶 ∈ TermCat ) | |
| termcbas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| termcbasmo.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| termcbasmo.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| termcid.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| termcid.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| termchommo.x | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| termchommo.y | ⊢ ( 𝜑 → 𝑊 ∈ 𝐵 ) | ||
| termchommo.f | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑍 𝐻 𝑊 ) ) | ||
| Assertion | termchommo | ⊢ ( 𝜑 → 𝐹 = 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcbas.c | ⊢ ( 𝜑 → 𝐶 ∈ TermCat ) | |
| 2 | termcbas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | termcbasmo.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 4 | termcbasmo.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 5 | termcid.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 6 | termcid.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 7 | termchommo.x | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 8 | termchommo.y | ⊢ ( 𝜑 → 𝑊 ∈ 𝐵 ) | |
| 9 | termchommo.f | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑍 𝐻 𝑊 ) ) | |
| 10 | 1 2 3 7 | termcbasmo | ⊢ ( 𝜑 → 𝑋 = 𝑍 ) |
| 11 | 1 2 4 8 | termcbasmo | ⊢ ( 𝜑 → 𝑌 = 𝑊 ) |
| 12 | 10 11 | oveq12d | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑍 𝐻 𝑊 ) ) |
| 13 | 9 12 | eleqtrrd | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 14 | 1 | termcthind | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) |
| 15 | 3 4 6 13 2 5 14 | thincmo2 | ⊢ ( 𝜑 → 𝐹 = 𝐺 ) |