This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Telescoping finitely supported group sum ranging over nonnegative integers, using explicit substitution. (Contributed by AV, 24-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | telgsums.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| telgsums.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | ||
| telgsums.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| telgsums.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| telgsums.f | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 ) | ||
| telgsums.s | ⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) | ||
| telgsums.u | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → 𝐶 = 0 ) ) | ||
| Assertion | telgsums | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ℕ0 ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ⦋ 0 / 𝑘 ⦌ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | telgsums.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | telgsums.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | |
| 3 | telgsums.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | telgsums.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 5 | telgsums.f | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 ) | |
| 6 | telgsums.s | ⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) | |
| 7 | telgsums.u | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → 𝐶 = 0 ) ) | |
| 8 | ablcmn | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ CMnd ) | |
| 9 | 2 8 | syl | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 10 | ablgrp | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) | |
| 11 | 2 10 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 12 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝐺 ∈ Grp ) |
| 13 | simpr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℕ0 ) | |
| 14 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 ) |
| 15 | rspcsbela | ⊢ ( ( 𝑖 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) | |
| 16 | 13 14 15 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
| 17 | peano2nn0 | ⊢ ( 𝑖 ∈ ℕ0 → ( 𝑖 + 1 ) ∈ ℕ0 ) | |
| 18 | rspcsbela | ⊢ ( ( ( 𝑖 + 1 ) ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) | |
| 19 | 17 5 18 | syl2anr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
| 20 | 1 3 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ∧ ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ∈ 𝐵 ) |
| 21 | 12 16 19 20 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ∈ 𝐵 ) |
| 22 | 21 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑖 ∈ ℕ0 ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ∈ 𝐵 ) |
| 23 | rspsbca | ⊢ ( ( 𝑖 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → 𝐶 = 0 ) ) → [ 𝑖 / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ) | |
| 24 | sbcimg | ⊢ ( 𝑖 ∈ V → ( [ 𝑖 / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ↔ ( [ 𝑖 / 𝑘 ] 𝑆 < 𝑘 → [ 𝑖 / 𝑘 ] 𝐶 = 0 ) ) ) | |
| 25 | sbcbr2g | ⊢ ( 𝑖 ∈ V → ( [ 𝑖 / 𝑘 ] 𝑆 < 𝑘 ↔ 𝑆 < ⦋ 𝑖 / 𝑘 ⦌ 𝑘 ) ) | |
| 26 | csbvarg | ⊢ ( 𝑖 ∈ V → ⦋ 𝑖 / 𝑘 ⦌ 𝑘 = 𝑖 ) | |
| 27 | 26 | breq2d | ⊢ ( 𝑖 ∈ V → ( 𝑆 < ⦋ 𝑖 / 𝑘 ⦌ 𝑘 ↔ 𝑆 < 𝑖 ) ) |
| 28 | 25 27 | bitrd | ⊢ ( 𝑖 ∈ V → ( [ 𝑖 / 𝑘 ] 𝑆 < 𝑘 ↔ 𝑆 < 𝑖 ) ) |
| 29 | sbceq1g | ⊢ ( 𝑖 ∈ V → ( [ 𝑖 / 𝑘 ] 𝐶 = 0 ↔ ⦋ 𝑖 / 𝑘 ⦌ 𝐶 = 0 ) ) | |
| 30 | 28 29 | imbi12d | ⊢ ( 𝑖 ∈ V → ( ( [ 𝑖 / 𝑘 ] 𝑆 < 𝑘 → [ 𝑖 / 𝑘 ] 𝐶 = 0 ) ↔ ( 𝑆 < 𝑖 → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 = 0 ) ) ) |
| 31 | 24 30 | bitrd | ⊢ ( 𝑖 ∈ V → ( [ 𝑖 / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ↔ ( 𝑆 < 𝑖 → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 = 0 ) ) ) |
| 32 | 31 | elv | ⊢ ( [ 𝑖 / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ↔ ( 𝑆 < 𝑖 → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 = 0 ) ) |
| 33 | 23 32 | sylib | ⊢ ( ( 𝑖 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → 𝐶 = 0 ) ) → ( 𝑆 < 𝑖 → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 = 0 ) ) |
| 34 | 33 | expcom | ⊢ ( ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → 𝐶 = 0 ) → ( 𝑖 ∈ ℕ0 → ( 𝑆 < 𝑖 → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 = 0 ) ) ) |
| 35 | 7 34 | syl | ⊢ ( 𝜑 → ( 𝑖 ∈ ℕ0 → ( 𝑆 < 𝑖 → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 = 0 ) ) ) |
| 36 | 35 | imp31 | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 = 0 ) |
| 37 | 6 | nn0red | ⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
| 38 | 37 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑆 ∈ ℝ ) |
| 39 | 38 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → 𝑆 ∈ ℝ ) |
| 40 | nn0re | ⊢ ( 𝑖 ∈ ℕ0 → 𝑖 ∈ ℝ ) | |
| 41 | 40 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → 𝑖 ∈ ℝ ) |
| 42 | 17 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → ( 𝑖 + 1 ) ∈ ℕ0 ) |
| 43 | 42 | nn0red | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → ( 𝑖 + 1 ) ∈ ℝ ) |
| 44 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → 𝑆 < 𝑖 ) | |
| 45 | 41 | ltp1d | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → 𝑖 < ( 𝑖 + 1 ) ) |
| 46 | 39 41 43 44 45 | lttrd | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → 𝑆 < ( 𝑖 + 1 ) ) |
| 47 | 46 | ex | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑆 < 𝑖 → 𝑆 < ( 𝑖 + 1 ) ) ) |
| 48 | rspsbca | ⊢ ( ( ( 𝑖 + 1 ) ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → 𝐶 = 0 ) ) → [ ( 𝑖 + 1 ) / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ) | |
| 49 | ovex | ⊢ ( 𝑖 + 1 ) ∈ V | |
| 50 | sbcimg | ⊢ ( ( 𝑖 + 1 ) ∈ V → ( [ ( 𝑖 + 1 ) / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ↔ ( [ ( 𝑖 + 1 ) / 𝑘 ] 𝑆 < 𝑘 → [ ( 𝑖 + 1 ) / 𝑘 ] 𝐶 = 0 ) ) ) | |
| 51 | sbcbr2g | ⊢ ( ( 𝑖 + 1 ) ∈ V → ( [ ( 𝑖 + 1 ) / 𝑘 ] 𝑆 < 𝑘 ↔ 𝑆 < ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝑘 ) ) | |
| 52 | csbvarg | ⊢ ( ( 𝑖 + 1 ) ∈ V → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝑘 = ( 𝑖 + 1 ) ) | |
| 53 | 52 | breq2d | ⊢ ( ( 𝑖 + 1 ) ∈ V → ( 𝑆 < ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝑘 ↔ 𝑆 < ( 𝑖 + 1 ) ) ) |
| 54 | 51 53 | bitrd | ⊢ ( ( 𝑖 + 1 ) ∈ V → ( [ ( 𝑖 + 1 ) / 𝑘 ] 𝑆 < 𝑘 ↔ 𝑆 < ( 𝑖 + 1 ) ) ) |
| 55 | sbceq1g | ⊢ ( ( 𝑖 + 1 ) ∈ V → ( [ ( 𝑖 + 1 ) / 𝑘 ] 𝐶 = 0 ↔ ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) | |
| 56 | 54 55 | imbi12d | ⊢ ( ( 𝑖 + 1 ) ∈ V → ( ( [ ( 𝑖 + 1 ) / 𝑘 ] 𝑆 < 𝑘 → [ ( 𝑖 + 1 ) / 𝑘 ] 𝐶 = 0 ) ↔ ( 𝑆 < ( 𝑖 + 1 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) ) |
| 57 | 50 56 | bitrd | ⊢ ( ( 𝑖 + 1 ) ∈ V → ( [ ( 𝑖 + 1 ) / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ↔ ( 𝑆 < ( 𝑖 + 1 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) ) |
| 58 | 49 57 | ax-mp | ⊢ ( [ ( 𝑖 + 1 ) / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ↔ ( 𝑆 < ( 𝑖 + 1 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) |
| 59 | 48 58 | sylib | ⊢ ( ( ( 𝑖 + 1 ) ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → 𝐶 = 0 ) ) → ( 𝑆 < ( 𝑖 + 1 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) |
| 60 | 17 7 59 | syl2anr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑆 < ( 𝑖 + 1 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) |
| 61 | 47 60 | syld | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑆 < 𝑖 → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) |
| 62 | 61 | imp | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) |
| 63 | 36 62 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) = ( 0 − 0 ) ) |
| 64 | 12 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → 𝐺 ∈ Grp ) |
| 65 | 1 4 | grpidcl | ⊢ ( 𝐺 ∈ Grp → 0 ∈ 𝐵 ) |
| 66 | 1 4 3 | grpsubid | ⊢ ( ( 𝐺 ∈ Grp ∧ 0 ∈ 𝐵 ) → ( 0 − 0 ) = 0 ) |
| 67 | 64 65 66 | syl2anc2 | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → ( 0 − 0 ) = 0 ) |
| 68 | 63 67 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) = 0 ) |
| 69 | 68 | ex | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑆 < 𝑖 → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) = 0 ) ) |
| 70 | 69 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑖 ∈ ℕ0 ( 𝑆 < 𝑖 → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) = 0 ) ) |
| 71 | 1 4 9 22 6 70 | gsummptnn0fz | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ℕ0 ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( 𝐺 Σg ( 𝑖 ∈ ( 0 ... 𝑆 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ) |
| 72 | fzssuz | ⊢ ( 0 ... ( 𝑆 + 1 ) ) ⊆ ( ℤ≥ ‘ 0 ) | |
| 73 | 72 | a1i | ⊢ ( 𝜑 → ( 0 ... ( 𝑆 + 1 ) ) ⊆ ( ℤ≥ ‘ 0 ) ) |
| 74 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 75 | 73 74 | sseqtrrdi | ⊢ ( 𝜑 → ( 0 ... ( 𝑆 + 1 ) ) ⊆ ℕ0 ) |
| 76 | ssralv | ⊢ ( ( 0 ... ( 𝑆 + 1 ) ) ⊆ ℕ0 → ( ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 → ∀ 𝑘 ∈ ( 0 ... ( 𝑆 + 1 ) ) 𝐶 ∈ 𝐵 ) ) | |
| 77 | 75 5 76 | sylc | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... ( 𝑆 + 1 ) ) 𝐶 ∈ 𝐵 ) |
| 78 | 1 2 3 6 77 | telgsumfz0s | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ( 0 ... 𝑆 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 0 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| 79 | peano2nn0 | ⊢ ( 𝑆 ∈ ℕ0 → ( 𝑆 + 1 ) ∈ ℕ0 ) | |
| 80 | 6 79 | syl | ⊢ ( 𝜑 → ( 𝑆 + 1 ) ∈ ℕ0 ) |
| 81 | 37 | ltp1d | ⊢ ( 𝜑 → 𝑆 < ( 𝑆 + 1 ) ) |
| 82 | rspsbca | ⊢ ( ( ( 𝑆 + 1 ) ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → 𝐶 = 0 ) ) → [ ( 𝑆 + 1 ) / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ) | |
| 83 | ovex | ⊢ ( 𝑆 + 1 ) ∈ V | |
| 84 | sbcimg | ⊢ ( ( 𝑆 + 1 ) ∈ V → ( [ ( 𝑆 + 1 ) / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ↔ ( [ ( 𝑆 + 1 ) / 𝑘 ] 𝑆 < 𝑘 → [ ( 𝑆 + 1 ) / 𝑘 ] 𝐶 = 0 ) ) ) | |
| 85 | sbcbr2g | ⊢ ( ( 𝑆 + 1 ) ∈ V → ( [ ( 𝑆 + 1 ) / 𝑘 ] 𝑆 < 𝑘 ↔ 𝑆 < ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝑘 ) ) | |
| 86 | csbvarg | ⊢ ( ( 𝑆 + 1 ) ∈ V → ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝑘 = ( 𝑆 + 1 ) ) | |
| 87 | 86 | breq2d | ⊢ ( ( 𝑆 + 1 ) ∈ V → ( 𝑆 < ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝑘 ↔ 𝑆 < ( 𝑆 + 1 ) ) ) |
| 88 | 85 87 | bitrd | ⊢ ( ( 𝑆 + 1 ) ∈ V → ( [ ( 𝑆 + 1 ) / 𝑘 ] 𝑆 < 𝑘 ↔ 𝑆 < ( 𝑆 + 1 ) ) ) |
| 89 | sbceq1g | ⊢ ( ( 𝑆 + 1 ) ∈ V → ( [ ( 𝑆 + 1 ) / 𝑘 ] 𝐶 = 0 ↔ ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) | |
| 90 | 88 89 | imbi12d | ⊢ ( ( 𝑆 + 1 ) ∈ V → ( ( [ ( 𝑆 + 1 ) / 𝑘 ] 𝑆 < 𝑘 → [ ( 𝑆 + 1 ) / 𝑘 ] 𝐶 = 0 ) ↔ ( 𝑆 < ( 𝑆 + 1 ) → ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) ) |
| 91 | 84 90 | bitrd | ⊢ ( ( 𝑆 + 1 ) ∈ V → ( [ ( 𝑆 + 1 ) / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ↔ ( 𝑆 < ( 𝑆 + 1 ) → ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) ) |
| 92 | 83 91 | ax-mp | ⊢ ( [ ( 𝑆 + 1 ) / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ↔ ( 𝑆 < ( 𝑆 + 1 ) → ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) |
| 93 | 82 92 | sylib | ⊢ ( ( ( 𝑆 + 1 ) ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → 𝐶 = 0 ) ) → ( 𝑆 < ( 𝑆 + 1 ) → ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) |
| 94 | 93 | ex | ⊢ ( ( 𝑆 + 1 ) ∈ ℕ0 → ( ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → 𝐶 = 0 ) → ( 𝑆 < ( 𝑆 + 1 ) → ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) ) |
| 95 | 80 7 81 94 | syl3c | ⊢ ( 𝜑 → ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) |
| 96 | 95 | oveq2d | ⊢ ( 𝜑 → ( ⦋ 0 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐶 ) = ( ⦋ 0 / 𝑘 ⦌ 𝐶 − 0 ) ) |
| 97 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 98 | 97 | a1i | ⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 99 | rspcsbela | ⊢ ( ( 0 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 ) → ⦋ 0 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) | |
| 100 | 98 5 99 | syl2anc | ⊢ ( 𝜑 → ⦋ 0 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
| 101 | 1 4 3 | grpsubid1 | ⊢ ( ( 𝐺 ∈ Grp ∧ ⦋ 0 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) → ( ⦋ 0 / 𝑘 ⦌ 𝐶 − 0 ) = ⦋ 0 / 𝑘 ⦌ 𝐶 ) |
| 102 | 11 100 101 | syl2anc | ⊢ ( 𝜑 → ( ⦋ 0 / 𝑘 ⦌ 𝐶 − 0 ) = ⦋ 0 / 𝑘 ⦌ 𝐶 ) |
| 103 | 96 102 | eqtrd | ⊢ ( 𝜑 → ( ⦋ 0 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐶 ) = ⦋ 0 / 𝑘 ⦌ 𝐶 ) |
| 104 | 71 78 103 | 3eqtrd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ℕ0 ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ⦋ 0 / 𝑘 ⦌ 𝐶 ) |