This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Telescoping finite group sum ranging over nonnegative integers, using explicit substitution. (Contributed by AV, 24-Oct-2019) (Proof shortened by AV, 25-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | telgsumfz0s.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| telgsumfz0s.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | ||
| telgsumfz0s.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| telgsumfz0s.s | ⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) | ||
| telgsumfz0s.f | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... ( 𝑆 + 1 ) ) 𝐶 ∈ 𝐵 ) | ||
| Assertion | telgsumfz0s | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ( 0 ... 𝑆 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 0 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | telgsumfz0s.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | telgsumfz0s.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | |
| 3 | telgsumfz0s.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | telgsumfz0s.s | ⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) | |
| 5 | telgsumfz0s.f | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... ( 𝑆 + 1 ) ) 𝐶 ∈ 𝐵 ) | |
| 6 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 7 | 4 6 | eleqtrdi | ⊢ ( 𝜑 → 𝑆 ∈ ( ℤ≥ ‘ 0 ) ) |
| 8 | 1 2 3 7 5 | telgsumfzs | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ( 0 ... 𝑆 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 0 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐶 ) ) |