This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Telescoping group sum ranging over a finite set of sequential integers, using implicit substitution, analogous to telfsum . (Contributed by AV, 23-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | telgsumfz.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| telgsumfz.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | ||
| telgsumfz.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| telgsumfz.n | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | ||
| telgsumfz.f | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) 𝐴 ∈ 𝐵 ) | ||
| telgsumfz.l | ⊢ ( 𝑘 = 𝑖 → 𝐴 = 𝐿 ) | ||
| telgsumfz.c | ⊢ ( 𝑘 = ( 𝑖 + 1 ) → 𝐴 = 𝐶 ) | ||
| telgsumfz.d | ⊢ ( 𝑘 = 𝑀 → 𝐴 = 𝐷 ) | ||
| telgsumfz.e | ⊢ ( 𝑘 = ( 𝑁 + 1 ) → 𝐴 = 𝐸 ) | ||
| Assertion | telgsumfz | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐿 − 𝐶 ) ) ) = ( 𝐷 − 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | telgsumfz.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | telgsumfz.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | |
| 3 | telgsumfz.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | telgsumfz.n | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 5 | telgsumfz.f | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) 𝐴 ∈ 𝐵 ) | |
| 6 | telgsumfz.l | ⊢ ( 𝑘 = 𝑖 → 𝐴 = 𝐿 ) | |
| 7 | telgsumfz.c | ⊢ ( 𝑘 = ( 𝑖 + 1 ) → 𝐴 = 𝐶 ) | |
| 8 | telgsumfz.d | ⊢ ( 𝑘 = 𝑀 → 𝐴 = 𝐷 ) | |
| 9 | telgsumfz.e | ⊢ ( 𝑘 = ( 𝑁 + 1 ) → 𝐴 = 𝐸 ) | |
| 10 | simpr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑖 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 11 | 6 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 = 𝑖 ) → 𝐴 = 𝐿 ) |
| 12 | 10 11 | csbied | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ... 𝑁 ) ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐴 = 𝐿 ) |
| 13 | 12 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐿 = ⦋ 𝑖 / 𝑘 ⦌ 𝐴 ) |
| 14 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑖 + 1 ) ∈ V ) | |
| 15 | 7 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 = ( 𝑖 + 1 ) ) → 𝐴 = 𝐶 ) |
| 16 | 14 15 | csbied | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ... 𝑁 ) ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐴 = 𝐶 ) |
| 17 | 16 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐶 = ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐴 ) |
| 18 | 13 17 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐿 − 𝐶 ) = ( ⦋ 𝑖 / 𝑘 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐴 ) ) |
| 19 | 18 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑖 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐿 − 𝐶 ) ) = ( 𝑖 ∈ ( 𝑀 ... 𝑁 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐴 ) ) ) |
| 20 | 19 | oveq2d | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐿 − 𝐶 ) ) ) = ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑁 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐴 ) ) ) ) |
| 21 | 1 2 3 4 5 | telgsumfzs | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑁 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐴 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐴 − ⦋ ( 𝑁 + 1 ) / 𝑘 ⦌ 𝐴 ) ) |
| 22 | 4 | elfvexd | ⊢ ( 𝜑 → 𝑀 ∈ V ) |
| 23 | 8 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝑀 ) → 𝐴 = 𝐷 ) |
| 24 | 22 23 | csbied | ⊢ ( 𝜑 → ⦋ 𝑀 / 𝑘 ⦌ 𝐴 = 𝐷 ) |
| 25 | ovexd | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ V ) | |
| 26 | 9 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 = ( 𝑁 + 1 ) ) → 𝐴 = 𝐸 ) |
| 27 | 25 26 | csbied | ⊢ ( 𝜑 → ⦋ ( 𝑁 + 1 ) / 𝑘 ⦌ 𝐴 = 𝐸 ) |
| 28 | 24 27 | oveq12d | ⊢ ( 𝜑 → ( ⦋ 𝑀 / 𝑘 ⦌ 𝐴 − ⦋ ( 𝑁 + 1 ) / 𝑘 ⦌ 𝐴 ) = ( 𝐷 − 𝐸 ) ) |
| 29 | 20 21 28 | 3eqtrd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐿 − 𝐶 ) ) ) = ( 𝐷 − 𝐸 ) ) |