This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of Gleason p. 133. (Contributed by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | recld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| cjrebd.2 | ⊢ ( 𝜑 → ( ∗ ‘ 𝐴 ) = 𝐴 ) | ||
| Assertion | cjrebd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | cjrebd.2 | ⊢ ( 𝜑 → ( ∗ ‘ 𝐴 ) = 𝐴 ) | |
| 3 | cjreb | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ∗ ‘ 𝐴 ) = 𝐴 ) ) | |
| 4 | 1 3 | syl | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ↔ ( ∗ ‘ 𝐴 ) = 𝐴 ) ) |
| 5 | 2 4 | mpbird | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |