This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For a set A with more than one element, the symmetric group on A is a proper subset of the monoid of endofunctions on A . (Contributed by AV, 31-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgpssefmnd.m | ⊢ 𝑀 = ( EndoFMnd ‘ 𝐴 ) | |
| symgpssefmnd.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | ||
| Assertion | symgpssefmnd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝐴 ) ) → ( Base ‘ 𝐺 ) ⊊ ( Base ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgpssefmnd.m | ⊢ 𝑀 = ( EndoFMnd ‘ 𝐴 ) | |
| 2 | symgpssefmnd.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| 3 | hashgt12el | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 5 | 2 4 | symgbasmap | ⊢ ( 𝑥 ∈ ( Base ‘ 𝐺 ) → 𝑥 ∈ ( 𝐴 ↑m 𝐴 ) ) |
| 6 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 7 | 1 6 | efmndbas | ⊢ ( Base ‘ 𝑀 ) = ( 𝐴 ↑m 𝐴 ) |
| 8 | 5 7 | eleqtrrdi | ⊢ ( 𝑥 ∈ ( Base ‘ 𝐺 ) → 𝑥 ∈ ( Base ‘ 𝑀 ) ) |
| 9 | 8 | ssriv | ⊢ ( Base ‘ 𝐺 ) ⊆ ( Base ‘ 𝑀 ) |
| 10 | 9 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ≠ 𝑦 ) → ( Base ‘ 𝐺 ) ⊆ ( Base ‘ 𝑀 ) ) |
| 11 | fconst6g | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝐴 × { 𝑥 } ) : 𝐴 ⟶ 𝐴 ) | |
| 12 | 11 | adantr | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐴 × { 𝑥 } ) : 𝐴 ⟶ 𝐴 ) |
| 13 | 12 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ≠ 𝑦 ) → ( 𝐴 × { 𝑥 } ) : 𝐴 ⟶ 𝐴 ) |
| 14 | 1 6 | elefmndbas | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 × { 𝑥 } ) ∈ ( Base ‘ 𝑀 ) ↔ ( 𝐴 × { 𝑥 } ) : 𝐴 ⟶ 𝐴 ) ) |
| 15 | 14 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ≠ 𝑦 ) → ( ( 𝐴 × { 𝑥 } ) ∈ ( Base ‘ 𝑀 ) ↔ ( 𝐴 × { 𝑥 } ) : 𝐴 ⟶ 𝐴 ) ) |
| 16 | 13 15 | mpbird | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ≠ 𝑦 ) → ( 𝐴 × { 𝑥 } ) ∈ ( Base ‘ 𝑀 ) ) |
| 17 | fconstg | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝐴 × { 𝑥 } ) : 𝐴 ⟶ { 𝑥 } ) | |
| 18 | 17 | adantr | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐴 × { 𝑥 } ) : 𝐴 ⟶ { 𝑥 } ) |
| 19 | 18 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ≠ 𝑦 ) → ( 𝐴 × { 𝑥 } ) : 𝐴 ⟶ { 𝑥 } ) |
| 20 | id | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≠ 𝑦 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≠ 𝑦 ) ) | |
| 21 | 20 | 3expa | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ≠ 𝑦 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≠ 𝑦 ) ) |
| 22 | 21 | 3adant1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ≠ 𝑦 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≠ 𝑦 ) ) |
| 23 | nf1oconst | ⊢ ( ( ( 𝐴 × { 𝑥 } ) : 𝐴 ⟶ { 𝑥 } ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≠ 𝑦 ) ) → ¬ ( 𝐴 × { 𝑥 } ) : 𝐴 –1-1-onto→ 𝐴 ) | |
| 24 | 19 22 23 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ≠ 𝑦 ) → ¬ ( 𝐴 × { 𝑥 } ) : 𝐴 –1-1-onto→ 𝐴 ) |
| 25 | 2 4 | elsymgbas | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 × { 𝑥 } ) ∈ ( Base ‘ 𝐺 ) ↔ ( 𝐴 × { 𝑥 } ) : 𝐴 –1-1-onto→ 𝐴 ) ) |
| 26 | 25 | notbid | ⊢ ( 𝐴 ∈ 𝑉 → ( ¬ ( 𝐴 × { 𝑥 } ) ∈ ( Base ‘ 𝐺 ) ↔ ¬ ( 𝐴 × { 𝑥 } ) : 𝐴 –1-1-onto→ 𝐴 ) ) |
| 27 | 26 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ≠ 𝑦 ) → ( ¬ ( 𝐴 × { 𝑥 } ) ∈ ( Base ‘ 𝐺 ) ↔ ¬ ( 𝐴 × { 𝑥 } ) : 𝐴 –1-1-onto→ 𝐴 ) ) |
| 28 | 24 27 | mpbird | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ≠ 𝑦 ) → ¬ ( 𝐴 × { 𝑥 } ) ∈ ( Base ‘ 𝐺 ) ) |
| 29 | 10 16 28 | ssnelpssd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ≠ 𝑦 ) → ( Base ‘ 𝐺 ) ⊊ ( Base ‘ 𝑀 ) ) |
| 30 | 29 | 3exp | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ≠ 𝑦 → ( Base ‘ 𝐺 ) ⊊ ( Base ‘ 𝑀 ) ) ) ) |
| 31 | 30 | rexlimdvv | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 → ( Base ‘ 𝐺 ) ⊊ ( Base ‘ 𝑀 ) ) ) |
| 32 | 31 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝐴 ) ) → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 → ( Base ‘ 𝐺 ) ⊊ ( Base ‘ 𝑀 ) ) ) |
| 33 | 3 32 | mpd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝐴 ) ) → ( Base ‘ 𝐺 ) ⊊ ( Base ‘ 𝑀 ) ) |