This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a set with more than one element are two different elements. (Contributed by Alexander van der Vekens, 15-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashgt12el | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 2 | fveq2 | ⊢ ( ∅ = 𝑉 → ( ♯ ‘ ∅ ) = ( ♯ ‘ 𝑉 ) ) | |
| 3 | 1 2 | eqtr3id | ⊢ ( ∅ = 𝑉 → 0 = ( ♯ ‘ 𝑉 ) ) |
| 4 | breq2 | ⊢ ( ( ♯ ‘ 𝑉 ) = 0 → ( 1 < ( ♯ ‘ 𝑉 ) ↔ 1 < 0 ) ) | |
| 5 | 4 | biimpd | ⊢ ( ( ♯ ‘ 𝑉 ) = 0 → ( 1 < ( ♯ ‘ 𝑉 ) → 1 < 0 ) ) |
| 6 | 5 | eqcoms | ⊢ ( 0 = ( ♯ ‘ 𝑉 ) → ( 1 < ( ♯ ‘ 𝑉 ) → 1 < 0 ) ) |
| 7 | 0le1 | ⊢ 0 ≤ 1 | |
| 8 | 0re | ⊢ 0 ∈ ℝ | |
| 9 | 1re | ⊢ 1 ∈ ℝ | |
| 10 | 8 9 | lenlti | ⊢ ( 0 ≤ 1 ↔ ¬ 1 < 0 ) |
| 11 | pm2.21 | ⊢ ( ¬ 1 < 0 → ( 1 < 0 → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ) ) | |
| 12 | 10 11 | sylbi | ⊢ ( 0 ≤ 1 → ( 1 < 0 → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ) ) |
| 13 | 7 12 | ax-mp | ⊢ ( 1 < 0 → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ) |
| 14 | 6 13 | syl6com | ⊢ ( 1 < ( ♯ ‘ 𝑉 ) → ( 0 = ( ♯ ‘ 𝑉 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ) ) |
| 15 | 14 | adantl | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ( 0 = ( ♯ ‘ 𝑉 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ) ) |
| 16 | 15 | com12 | ⊢ ( 0 = ( ♯ ‘ 𝑉 ) → ( ( 𝑉 ∈ 𝑊 ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ) ) |
| 17 | 3 16 | syl | ⊢ ( ∅ = 𝑉 → ( ( 𝑉 ∈ 𝑊 ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ) ) |
| 18 | df-ne | ⊢ ( ∅ ≠ 𝑉 ↔ ¬ ∅ = 𝑉 ) | |
| 19 | necom | ⊢ ( ∅ ≠ 𝑉 ↔ 𝑉 ≠ ∅ ) | |
| 20 | 18 19 | bitr3i | ⊢ ( ¬ ∅ = 𝑉 ↔ 𝑉 ≠ ∅ ) |
| 21 | ralnex | ⊢ ( ∀ 𝑎 ∈ 𝑉 ¬ ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ↔ ¬ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ) | |
| 22 | ralnex | ⊢ ( ∀ 𝑏 ∈ 𝑉 ¬ 𝑎 ≠ 𝑏 ↔ ¬ ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ) | |
| 23 | nne | ⊢ ( ¬ 𝑎 ≠ 𝑏 ↔ 𝑎 = 𝑏 ) | |
| 24 | equcom | ⊢ ( 𝑎 = 𝑏 ↔ 𝑏 = 𝑎 ) | |
| 25 | 23 24 | bitri | ⊢ ( ¬ 𝑎 ≠ 𝑏 ↔ 𝑏 = 𝑎 ) |
| 26 | 25 | ralbii | ⊢ ( ∀ 𝑏 ∈ 𝑉 ¬ 𝑎 ≠ 𝑏 ↔ ∀ 𝑏 ∈ 𝑉 𝑏 = 𝑎 ) |
| 27 | 22 26 | bitr3i | ⊢ ( ¬ ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ↔ ∀ 𝑏 ∈ 𝑉 𝑏 = 𝑎 ) |
| 28 | 27 | ralbii | ⊢ ( ∀ 𝑎 ∈ 𝑉 ¬ ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ↔ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 𝑏 = 𝑎 ) |
| 29 | 21 28 | bitr3i | ⊢ ( ¬ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ↔ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 𝑏 = 𝑎 ) |
| 30 | eqsn | ⊢ ( 𝑉 ≠ ∅ → ( 𝑉 = { 𝑎 } ↔ ∀ 𝑏 ∈ 𝑉 𝑏 = 𝑎 ) ) | |
| 31 | 30 | adantl | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) → ( 𝑉 = { 𝑎 } ↔ ∀ 𝑏 ∈ 𝑉 𝑏 = 𝑎 ) ) |
| 32 | 31 | bicomd | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) → ( ∀ 𝑏 ∈ 𝑉 𝑏 = 𝑎 ↔ 𝑉 = { 𝑎 } ) ) |
| 33 | 32 | ralbidv | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) → ( ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 𝑏 = 𝑎 ↔ ∀ 𝑎 ∈ 𝑉 𝑉 = { 𝑎 } ) ) |
| 34 | fveq2 | ⊢ ( 𝑉 = { 𝑎 } → ( ♯ ‘ 𝑉 ) = ( ♯ ‘ { 𝑎 } ) ) | |
| 35 | hashsnle1 | ⊢ ( ♯ ‘ { 𝑎 } ) ≤ 1 | |
| 36 | 34 35 | eqbrtrdi | ⊢ ( 𝑉 = { 𝑎 } → ( ♯ ‘ 𝑉 ) ≤ 1 ) |
| 37 | 36 | a1i | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑎 ∈ 𝑉 ) → ( 𝑉 = { 𝑎 } → ( ♯ ‘ 𝑉 ) ≤ 1 ) ) |
| 38 | 37 | reximdva0 | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) → ∃ 𝑎 ∈ 𝑉 ( 𝑉 = { 𝑎 } → ( ♯ ‘ 𝑉 ) ≤ 1 ) ) |
| 39 | r19.36v | ⊢ ( ∃ 𝑎 ∈ 𝑉 ( 𝑉 = { 𝑎 } → ( ♯ ‘ 𝑉 ) ≤ 1 ) → ( ∀ 𝑎 ∈ 𝑉 𝑉 = { 𝑎 } → ( ♯ ‘ 𝑉 ) ≤ 1 ) ) | |
| 40 | 38 39 | syl | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) → ( ∀ 𝑎 ∈ 𝑉 𝑉 = { 𝑎 } → ( ♯ ‘ 𝑉 ) ≤ 1 ) ) |
| 41 | 33 40 | sylbid | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) → ( ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 𝑏 = 𝑎 → ( ♯ ‘ 𝑉 ) ≤ 1 ) ) |
| 42 | hashxrcl | ⊢ ( 𝑉 ∈ 𝑊 → ( ♯ ‘ 𝑉 ) ∈ ℝ* ) | |
| 43 | 42 | adantr | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) → ( ♯ ‘ 𝑉 ) ∈ ℝ* ) |
| 44 | 1xr | ⊢ 1 ∈ ℝ* | |
| 45 | xrlenlt | ⊢ ( ( ( ♯ ‘ 𝑉 ) ∈ ℝ* ∧ 1 ∈ ℝ* ) → ( ( ♯ ‘ 𝑉 ) ≤ 1 ↔ ¬ 1 < ( ♯ ‘ 𝑉 ) ) ) | |
| 46 | 43 44 45 | sylancl | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) → ( ( ♯ ‘ 𝑉 ) ≤ 1 ↔ ¬ 1 < ( ♯ ‘ 𝑉 ) ) ) |
| 47 | 41 46 | sylibd | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) → ( ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 𝑏 = 𝑎 → ¬ 1 < ( ♯ ‘ 𝑉 ) ) ) |
| 48 | 29 47 | biimtrid | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) → ( ¬ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 → ¬ 1 < ( ♯ ‘ 𝑉 ) ) ) |
| 49 | 48 | con4d | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) → ( 1 < ( ♯ ‘ 𝑉 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ) ) |
| 50 | 49 | impancom | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ( 𝑉 ≠ ∅ → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ) ) |
| 51 | 50 | com12 | ⊢ ( 𝑉 ≠ ∅ → ( ( 𝑉 ∈ 𝑊 ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ) ) |
| 52 | 20 51 | sylbi | ⊢ ( ¬ ∅ = 𝑉 → ( ( 𝑉 ∈ 𝑊 ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ) ) |
| 53 | 17 52 | pm2.61i | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ) |