This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constant function from at least two elements is not bijective. (Contributed by AV, 30-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nf1oconst | ⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌 ) ) → ¬ 𝐹 : 𝐴 –1-1-onto→ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf1const | ⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌 ) ) → ¬ 𝐹 : 𝐴 –1-1→ 𝐶 ) | |
| 2 | 1 | orcd | ⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌 ) ) → ( ¬ 𝐹 : 𝐴 –1-1→ 𝐶 ∨ ¬ 𝐹 : 𝐴 –onto→ 𝐶 ) ) |
| 3 | ianor | ⊢ ( ¬ ( 𝐹 : 𝐴 –1-1→ 𝐶 ∧ 𝐹 : 𝐴 –onto→ 𝐶 ) ↔ ( ¬ 𝐹 : 𝐴 –1-1→ 𝐶 ∨ ¬ 𝐹 : 𝐴 –onto→ 𝐶 ) ) | |
| 4 | df-f1o | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐶 ↔ ( 𝐹 : 𝐴 –1-1→ 𝐶 ∧ 𝐹 : 𝐴 –onto→ 𝐶 ) ) | |
| 5 | 3 4 | xchnxbir | ⊢ ( ¬ 𝐹 : 𝐴 –1-1-onto→ 𝐶 ↔ ( ¬ 𝐹 : 𝐴 –1-1→ 𝐶 ∨ ¬ 𝐹 : 𝐴 –onto→ 𝐶 ) ) |
| 6 | 2 5 | sylibr | ⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌 ) ) → ¬ 𝐹 : 𝐴 –1-1-onto→ 𝐶 ) |