This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is an onto function. (Contributed by AV, 7-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgfixf.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| symgfixf.q | ⊢ 𝑄 = { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } | ||
| symgfixf.s | ⊢ 𝑆 = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) | ||
| symgfixf.h | ⊢ 𝐻 = ( 𝑞 ∈ 𝑄 ↦ ( 𝑞 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) | ||
| Assertion | symgfixfo | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) → 𝐻 : 𝑄 –onto→ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgfixf.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| 2 | symgfixf.q | ⊢ 𝑄 = { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } | |
| 3 | symgfixf.s | ⊢ 𝑆 = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) | |
| 4 | symgfixf.h | ⊢ 𝐻 = ( 𝑞 ∈ 𝑄 ↦ ( 𝑞 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) | |
| 5 | 1 2 3 4 | symgfixf | ⊢ ( 𝐾 ∈ 𝑁 → 𝐻 : 𝑄 ⟶ 𝑆 ) |
| 6 | 5 | adantl | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) → 𝐻 : 𝑄 ⟶ 𝑆 ) |
| 7 | eqeq1 | ⊢ ( 𝑖 = 𝑗 → ( 𝑖 = 𝐾 ↔ 𝑗 = 𝐾 ) ) | |
| 8 | fveq2 | ⊢ ( 𝑖 = 𝑗 → ( 𝑠 ‘ 𝑖 ) = ( 𝑠 ‘ 𝑗 ) ) | |
| 9 | 7 8 | ifbieq2d | ⊢ ( 𝑖 = 𝑗 → if ( 𝑖 = 𝐾 , 𝐾 , ( 𝑠 ‘ 𝑖 ) ) = if ( 𝑗 = 𝐾 , 𝐾 , ( 𝑠 ‘ 𝑗 ) ) ) |
| 10 | 9 | cbvmptv | ⊢ ( 𝑖 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , 𝐾 , ( 𝑠 ‘ 𝑖 ) ) ) = ( 𝑗 ∈ 𝑁 ↦ if ( 𝑗 = 𝐾 , 𝐾 , ( 𝑠 ‘ 𝑗 ) ) ) |
| 11 | 1 2 3 4 10 | symgfixfolem1 | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ∧ 𝑠 ∈ 𝑆 ) → ( 𝑖 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , 𝐾 , ( 𝑠 ‘ 𝑖 ) ) ) ∈ 𝑄 ) |
| 12 | 11 | 3expa | ⊢ ( ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝑖 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , 𝐾 , ( 𝑠 ‘ 𝑖 ) ) ) ∈ 𝑄 ) |
| 13 | simpr | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) → 𝐾 ∈ 𝑁 ) | |
| 14 | 13 | anim1i | ⊢ ( ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝐾 ∈ 𝑁 ∧ 𝑠 ∈ 𝑆 ) ) |
| 15 | 14 | adantl | ⊢ ( ( 𝑝 = ( 𝑖 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , 𝐾 , ( 𝑠 ‘ 𝑖 ) ) ) ∧ ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑠 ∈ 𝑆 ) ) → ( 𝐾 ∈ 𝑁 ∧ 𝑠 ∈ 𝑆 ) ) |
| 16 | eqid | ⊢ ( 𝑖 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , 𝐾 , ( 𝑠 ‘ 𝑖 ) ) ) = ( 𝑖 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , 𝐾 , ( 𝑠 ‘ 𝑖 ) ) ) | |
| 17 | 3 16 | symgextres | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑠 ∈ 𝑆 ) → ( ( 𝑖 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , 𝐾 , ( 𝑠 ‘ 𝑖 ) ) ) ↾ ( 𝑁 ∖ { 𝐾 } ) ) = 𝑠 ) |
| 18 | 15 17 | syl | ⊢ ( ( 𝑝 = ( 𝑖 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , 𝐾 , ( 𝑠 ‘ 𝑖 ) ) ) ∧ ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝑖 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , 𝐾 , ( 𝑠 ‘ 𝑖 ) ) ) ↾ ( 𝑁 ∖ { 𝐾 } ) ) = 𝑠 ) |
| 19 | 18 | eqcomd | ⊢ ( ( 𝑝 = ( 𝑖 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , 𝐾 , ( 𝑠 ‘ 𝑖 ) ) ) ∧ ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑠 ∈ 𝑆 ) ) → 𝑠 = ( ( 𝑖 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , 𝐾 , ( 𝑠 ‘ 𝑖 ) ) ) ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) |
| 20 | reseq1 | ⊢ ( 𝑝 = ( 𝑖 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , 𝐾 , ( 𝑠 ‘ 𝑖 ) ) ) → ( 𝑝 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( 𝑖 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , 𝐾 , ( 𝑠 ‘ 𝑖 ) ) ) ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) | |
| 21 | 20 | eqeq2d | ⊢ ( 𝑝 = ( 𝑖 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , 𝐾 , ( 𝑠 ‘ 𝑖 ) ) ) → ( 𝑠 = ( 𝑝 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ↔ 𝑠 = ( ( 𝑖 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , 𝐾 , ( 𝑠 ‘ 𝑖 ) ) ) ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) ) |
| 22 | 21 | adantr | ⊢ ( ( 𝑝 = ( 𝑖 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , 𝐾 , ( 𝑠 ‘ 𝑖 ) ) ) ∧ ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑠 ∈ 𝑆 ) ) → ( 𝑠 = ( 𝑝 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ↔ 𝑠 = ( ( 𝑖 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , 𝐾 , ( 𝑠 ‘ 𝑖 ) ) ) ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) ) |
| 23 | 19 22 | mpbird | ⊢ ( ( 𝑝 = ( 𝑖 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , 𝐾 , ( 𝑠 ‘ 𝑖 ) ) ) ∧ ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑠 ∈ 𝑆 ) ) → 𝑠 = ( 𝑝 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) |
| 24 | 23 | ex | ⊢ ( 𝑝 = ( 𝑖 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , 𝐾 , ( 𝑠 ‘ 𝑖 ) ) ) → ( ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑠 ∈ 𝑆 ) → 𝑠 = ( 𝑝 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) ) |
| 25 | 24 | adantl | ⊢ ( ( ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑝 = ( 𝑖 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , 𝐾 , ( 𝑠 ‘ 𝑖 ) ) ) ) → ( ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑠 ∈ 𝑆 ) → 𝑠 = ( 𝑝 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) ) |
| 26 | 12 25 | rspcimedv | ⊢ ( ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑠 ∈ 𝑆 ) → ( ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑠 ∈ 𝑆 ) → ∃ 𝑝 ∈ 𝑄 𝑠 = ( 𝑝 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) ) |
| 27 | 26 | pm2.43i | ⊢ ( ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑠 ∈ 𝑆 ) → ∃ 𝑝 ∈ 𝑄 𝑠 = ( 𝑝 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) |
| 28 | 4 | fvtresfn | ⊢ ( 𝑝 ∈ 𝑄 → ( 𝐻 ‘ 𝑝 ) = ( 𝑝 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) |
| 29 | 28 | eqeq2d | ⊢ ( 𝑝 ∈ 𝑄 → ( 𝑠 = ( 𝐻 ‘ 𝑝 ) ↔ 𝑠 = ( 𝑝 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) ) |
| 30 | 29 | adantl | ⊢ ( ( ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑝 ∈ 𝑄 ) → ( 𝑠 = ( 𝐻 ‘ 𝑝 ) ↔ 𝑠 = ( 𝑝 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) ) |
| 31 | 30 | rexbidva | ⊢ ( ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑠 ∈ 𝑆 ) → ( ∃ 𝑝 ∈ 𝑄 𝑠 = ( 𝐻 ‘ 𝑝 ) ↔ ∃ 𝑝 ∈ 𝑄 𝑠 = ( 𝑝 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) ) |
| 32 | 27 31 | mpbird | ⊢ ( ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑠 ∈ 𝑆 ) → ∃ 𝑝 ∈ 𝑄 𝑠 = ( 𝐻 ‘ 𝑝 ) ) |
| 33 | 32 | ralrimiva | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) → ∀ 𝑠 ∈ 𝑆 ∃ 𝑝 ∈ 𝑄 𝑠 = ( 𝐻 ‘ 𝑝 ) ) |
| 34 | dffo3 | ⊢ ( 𝐻 : 𝑄 –onto→ 𝑆 ↔ ( 𝐻 : 𝑄 ⟶ 𝑆 ∧ ∀ 𝑠 ∈ 𝑆 ∃ 𝑝 ∈ 𝑄 𝑠 = ( 𝐻 ‘ 𝑝 ) ) ) | |
| 35 | 6 33 34 | sylanbrc | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) → 𝐻 : 𝑄 –onto→ 𝑆 ) |