This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of the extension of a permutation, fixing the additional element, to the original domain. (Contributed by AV, 6-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgext.s | ⊢ 𝑆 = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) | |
| symgext.e | ⊢ 𝐸 = ( 𝑥 ∈ 𝑁 ↦ if ( 𝑥 = 𝐾 , 𝐾 , ( 𝑍 ‘ 𝑥 ) ) ) | ||
| Assertion | symgextres | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( 𝐸 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgext.s | ⊢ 𝑆 = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) | |
| 2 | symgext.e | ⊢ 𝐸 = ( 𝑥 ∈ 𝑁 ↦ if ( 𝑥 = 𝐾 , 𝐾 , ( 𝑍 ‘ 𝑥 ) ) ) | |
| 3 | 1 2 | symgextfv | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( 𝑖 ∈ ( 𝑁 ∖ { 𝐾 } ) → ( 𝐸 ‘ 𝑖 ) = ( 𝑍 ‘ 𝑖 ) ) ) |
| 4 | 3 | ralrimiv | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ∀ 𝑖 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝐸 ‘ 𝑖 ) = ( 𝑍 ‘ 𝑖 ) ) |
| 5 | 1 2 | symgextf | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → 𝐸 : 𝑁 ⟶ 𝑁 ) |
| 6 | 5 | ffnd | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → 𝐸 Fn 𝑁 ) |
| 7 | eqid | ⊢ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) = ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | |
| 8 | 7 1 | symgbasf | ⊢ ( 𝑍 ∈ 𝑆 → 𝑍 : ( 𝑁 ∖ { 𝐾 } ) ⟶ ( 𝑁 ∖ { 𝐾 } ) ) |
| 9 | 8 | ffnd | ⊢ ( 𝑍 ∈ 𝑆 → 𝑍 Fn ( 𝑁 ∖ { 𝐾 } ) ) |
| 10 | 9 | adantl | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → 𝑍 Fn ( 𝑁 ∖ { 𝐾 } ) ) |
| 11 | difssd | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( 𝑁 ∖ { 𝐾 } ) ⊆ 𝑁 ) | |
| 12 | fvreseq1 | ⊢ ( ( ( 𝐸 Fn 𝑁 ∧ 𝑍 Fn ( 𝑁 ∖ { 𝐾 } ) ) ∧ ( 𝑁 ∖ { 𝐾 } ) ⊆ 𝑁 ) → ( ( 𝐸 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = 𝑍 ↔ ∀ 𝑖 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝐸 ‘ 𝑖 ) = ( 𝑍 ‘ 𝑖 ) ) ) | |
| 13 | 6 10 11 12 | syl21anc | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( ( 𝐸 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = 𝑍 ↔ ∀ 𝑖 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝐸 ‘ 𝑖 ) = ( 𝑍 ‘ 𝑖 ) ) ) |
| 14 | 4 13 | mpbird | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( 𝐸 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = 𝑍 ) |