This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is a bijection. (Contributed by AV, 7-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgfixf.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| symgfixf.q | ⊢ 𝑄 = { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } | ||
| symgfixf.s | ⊢ 𝑆 = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) | ||
| symgfixf.h | ⊢ 𝐻 = ( 𝑞 ∈ 𝑄 ↦ ( 𝑞 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) | ||
| Assertion | symgfixf1o | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) → 𝐻 : 𝑄 –1-1-onto→ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgfixf.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| 2 | symgfixf.q | ⊢ 𝑄 = { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } | |
| 3 | symgfixf.s | ⊢ 𝑆 = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) | |
| 4 | symgfixf.h | ⊢ 𝐻 = ( 𝑞 ∈ 𝑄 ↦ ( 𝑞 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) | |
| 5 | 1 2 3 4 | symgfixf1 | ⊢ ( 𝐾 ∈ 𝑁 → 𝐻 : 𝑄 –1-1→ 𝑆 ) |
| 6 | 5 | adantl | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) → 𝐻 : 𝑄 –1-1→ 𝑆 ) |
| 7 | 1 2 3 4 | symgfixfo | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) → 𝐻 : 𝑄 –onto→ 𝑆 ) |
| 8 | df-f1o | ⊢ ( 𝐻 : 𝑄 –1-1-onto→ 𝑆 ↔ ( 𝐻 : 𝑄 –1-1→ 𝑆 ∧ 𝐻 : 𝑄 –onto→ 𝑆 ) ) | |
| 9 | 6 7 8 | sylanbrc | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ) → 𝐻 : 𝑄 –1-1-onto→ 𝑆 ) |