This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is an onto function. (Contributed by AV, 7-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgfixf.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| symgfixf.q | |- Q = { q e. P | ( q ` K ) = K } |
||
| symgfixf.s | |- S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
||
| symgfixf.h | |- H = ( q e. Q |-> ( q |` ( N \ { K } ) ) ) |
||
| Assertion | symgfixfo | |- ( ( N e. V /\ K e. N ) -> H : Q -onto-> S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgfixf.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| 2 | symgfixf.q | |- Q = { q e. P | ( q ` K ) = K } |
|
| 3 | symgfixf.s | |- S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
|
| 4 | symgfixf.h | |- H = ( q e. Q |-> ( q |` ( N \ { K } ) ) ) |
|
| 5 | 1 2 3 4 | symgfixf | |- ( K e. N -> H : Q --> S ) |
| 6 | 5 | adantl | |- ( ( N e. V /\ K e. N ) -> H : Q --> S ) |
| 7 | eqeq1 | |- ( i = j -> ( i = K <-> j = K ) ) |
|
| 8 | fveq2 | |- ( i = j -> ( s ` i ) = ( s ` j ) ) |
|
| 9 | 7 8 | ifbieq2d | |- ( i = j -> if ( i = K , K , ( s ` i ) ) = if ( j = K , K , ( s ` j ) ) ) |
| 10 | 9 | cbvmptv | |- ( i e. N |-> if ( i = K , K , ( s ` i ) ) ) = ( j e. N |-> if ( j = K , K , ( s ` j ) ) ) |
| 11 | 1 2 3 4 10 | symgfixfolem1 | |- ( ( N e. V /\ K e. N /\ s e. S ) -> ( i e. N |-> if ( i = K , K , ( s ` i ) ) ) e. Q ) |
| 12 | 11 | 3expa | |- ( ( ( N e. V /\ K e. N ) /\ s e. S ) -> ( i e. N |-> if ( i = K , K , ( s ` i ) ) ) e. Q ) |
| 13 | simpr | |- ( ( N e. V /\ K e. N ) -> K e. N ) |
|
| 14 | 13 | anim1i | |- ( ( ( N e. V /\ K e. N ) /\ s e. S ) -> ( K e. N /\ s e. S ) ) |
| 15 | 14 | adantl | |- ( ( p = ( i e. N |-> if ( i = K , K , ( s ` i ) ) ) /\ ( ( N e. V /\ K e. N ) /\ s e. S ) ) -> ( K e. N /\ s e. S ) ) |
| 16 | eqid | |- ( i e. N |-> if ( i = K , K , ( s ` i ) ) ) = ( i e. N |-> if ( i = K , K , ( s ` i ) ) ) |
|
| 17 | 3 16 | symgextres | |- ( ( K e. N /\ s e. S ) -> ( ( i e. N |-> if ( i = K , K , ( s ` i ) ) ) |` ( N \ { K } ) ) = s ) |
| 18 | 15 17 | syl | |- ( ( p = ( i e. N |-> if ( i = K , K , ( s ` i ) ) ) /\ ( ( N e. V /\ K e. N ) /\ s e. S ) ) -> ( ( i e. N |-> if ( i = K , K , ( s ` i ) ) ) |` ( N \ { K } ) ) = s ) |
| 19 | 18 | eqcomd | |- ( ( p = ( i e. N |-> if ( i = K , K , ( s ` i ) ) ) /\ ( ( N e. V /\ K e. N ) /\ s e. S ) ) -> s = ( ( i e. N |-> if ( i = K , K , ( s ` i ) ) ) |` ( N \ { K } ) ) ) |
| 20 | reseq1 | |- ( p = ( i e. N |-> if ( i = K , K , ( s ` i ) ) ) -> ( p |` ( N \ { K } ) ) = ( ( i e. N |-> if ( i = K , K , ( s ` i ) ) ) |` ( N \ { K } ) ) ) |
|
| 21 | 20 | eqeq2d | |- ( p = ( i e. N |-> if ( i = K , K , ( s ` i ) ) ) -> ( s = ( p |` ( N \ { K } ) ) <-> s = ( ( i e. N |-> if ( i = K , K , ( s ` i ) ) ) |` ( N \ { K } ) ) ) ) |
| 22 | 21 | adantr | |- ( ( p = ( i e. N |-> if ( i = K , K , ( s ` i ) ) ) /\ ( ( N e. V /\ K e. N ) /\ s e. S ) ) -> ( s = ( p |` ( N \ { K } ) ) <-> s = ( ( i e. N |-> if ( i = K , K , ( s ` i ) ) ) |` ( N \ { K } ) ) ) ) |
| 23 | 19 22 | mpbird | |- ( ( p = ( i e. N |-> if ( i = K , K , ( s ` i ) ) ) /\ ( ( N e. V /\ K e. N ) /\ s e. S ) ) -> s = ( p |` ( N \ { K } ) ) ) |
| 24 | 23 | ex | |- ( p = ( i e. N |-> if ( i = K , K , ( s ` i ) ) ) -> ( ( ( N e. V /\ K e. N ) /\ s e. S ) -> s = ( p |` ( N \ { K } ) ) ) ) |
| 25 | 24 | adantl | |- ( ( ( ( N e. V /\ K e. N ) /\ s e. S ) /\ p = ( i e. N |-> if ( i = K , K , ( s ` i ) ) ) ) -> ( ( ( N e. V /\ K e. N ) /\ s e. S ) -> s = ( p |` ( N \ { K } ) ) ) ) |
| 26 | 12 25 | rspcimedv | |- ( ( ( N e. V /\ K e. N ) /\ s e. S ) -> ( ( ( N e. V /\ K e. N ) /\ s e. S ) -> E. p e. Q s = ( p |` ( N \ { K } ) ) ) ) |
| 27 | 26 | pm2.43i | |- ( ( ( N e. V /\ K e. N ) /\ s e. S ) -> E. p e. Q s = ( p |` ( N \ { K } ) ) ) |
| 28 | 4 | fvtresfn | |- ( p e. Q -> ( H ` p ) = ( p |` ( N \ { K } ) ) ) |
| 29 | 28 | eqeq2d | |- ( p e. Q -> ( s = ( H ` p ) <-> s = ( p |` ( N \ { K } ) ) ) ) |
| 30 | 29 | adantl | |- ( ( ( ( N e. V /\ K e. N ) /\ s e. S ) /\ p e. Q ) -> ( s = ( H ` p ) <-> s = ( p |` ( N \ { K } ) ) ) ) |
| 31 | 30 | rexbidva | |- ( ( ( N e. V /\ K e. N ) /\ s e. S ) -> ( E. p e. Q s = ( H ` p ) <-> E. p e. Q s = ( p |` ( N \ { K } ) ) ) ) |
| 32 | 27 31 | mpbird | |- ( ( ( N e. V /\ K e. N ) /\ s e. S ) -> E. p e. Q s = ( H ` p ) ) |
| 33 | 32 | ralrimiva | |- ( ( N e. V /\ K e. N ) -> A. s e. S E. p e. Q s = ( H ` p ) ) |
| 34 | dffo3 | |- ( H : Q -onto-> S <-> ( H : Q --> S /\ A. s e. S E. p e. Q s = ( H ` p ) ) ) |
|
| 35 | 6 33 34 | sylanbrc | |- ( ( N e. V /\ K e. N ) -> H : Q -onto-> S ) |