This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for symgfixfo . (Contributed by AV, 7-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgfixf.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| symgfixf.q | ⊢ 𝑄 = { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } | ||
| symgfixf.s | ⊢ 𝑆 = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) | ||
| symgfixf.h | ⊢ 𝐻 = ( 𝑞 ∈ 𝑄 ↦ ( 𝑞 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) | ||
| symgfixfo.e | ⊢ 𝐸 = ( 𝑥 ∈ 𝑁 ↦ if ( 𝑥 = 𝐾 , 𝐾 , ( 𝑍 ‘ 𝑥 ) ) ) | ||
| Assertion | symgfixfolem1 | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → 𝐸 ∈ 𝑄 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgfixf.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| 2 | symgfixf.q | ⊢ 𝑄 = { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } | |
| 3 | symgfixf.s | ⊢ 𝑆 = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) | |
| 4 | symgfixf.h | ⊢ 𝐻 = ( 𝑞 ∈ 𝑄 ↦ ( 𝑞 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) | |
| 5 | symgfixfo.e | ⊢ 𝐸 = ( 𝑥 ∈ 𝑁 ↦ if ( 𝑥 = 𝐾 , 𝐾 , ( 𝑍 ‘ 𝑥 ) ) ) | |
| 6 | 3 5 | symgextf1o | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → 𝐸 : 𝑁 –1-1-onto→ 𝑁 ) |
| 7 | 6 | 3adant1 | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → 𝐸 : 𝑁 –1-1-onto→ 𝑁 ) |
| 8 | iftrue | ⊢ ( 𝑥 = 𝐾 → if ( 𝑥 = 𝐾 , 𝐾 , ( 𝑍 ‘ 𝑥 ) ) = 𝐾 ) | |
| 9 | simp2 | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → 𝐾 ∈ 𝑁 ) | |
| 10 | 5 8 9 9 | fvmptd3 | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( 𝐸 ‘ 𝐾 ) = 𝐾 ) |
| 11 | mptexg | ⊢ ( 𝑁 ∈ 𝑉 → ( 𝑥 ∈ 𝑁 ↦ if ( 𝑥 = 𝐾 , 𝐾 , ( 𝑍 ‘ 𝑥 ) ) ) ∈ V ) | |
| 12 | 11 | 3ad2ant1 | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( 𝑥 ∈ 𝑁 ↦ if ( 𝑥 = 𝐾 , 𝐾 , ( 𝑍 ‘ 𝑥 ) ) ) ∈ V ) |
| 13 | 5 12 | eqeltrid | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → 𝐸 ∈ V ) |
| 14 | 1 2 | symgfixelq | ⊢ ( 𝐸 ∈ V → ( 𝐸 ∈ 𝑄 ↔ ( 𝐸 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐸 ‘ 𝐾 ) = 𝐾 ) ) ) |
| 15 | 13 14 | syl | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( 𝐸 ∈ 𝑄 ↔ ( 𝐸 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 𝐸 ‘ 𝐾 ) = 𝐾 ) ) ) |
| 16 | 7 10 15 | mpbir2and | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → 𝐸 ∈ 𝑄 ) |