This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The extension of a permutation, fixing the additional element, is a 1-1 function. (Contributed by AV, 6-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgext.s | ⊢ 𝑆 = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) | |
| symgext.e | ⊢ 𝐸 = ( 𝑥 ∈ 𝑁 ↦ if ( 𝑥 = 𝐾 , 𝐾 , ( 𝑍 ‘ 𝑥 ) ) ) | ||
| Assertion | symgextf1 | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → 𝐸 : 𝑁 –1-1→ 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgext.s | ⊢ 𝑆 = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) | |
| 2 | symgext.e | ⊢ 𝐸 = ( 𝑥 ∈ 𝑁 ↦ if ( 𝑥 = 𝐾 , 𝐾 , ( 𝑍 ‘ 𝑥 ) ) ) | |
| 3 | 1 2 | symgextf | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → 𝐸 : 𝑁 ⟶ 𝑁 ) |
| 4 | difsnid | ⊢ ( 𝐾 ∈ 𝑁 → ( ( 𝑁 ∖ { 𝐾 } ) ∪ { 𝐾 } ) = 𝑁 ) | |
| 5 | 4 | eqcomd | ⊢ ( 𝐾 ∈ 𝑁 → 𝑁 = ( ( 𝑁 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) |
| 6 | 5 | eleq2d | ⊢ ( 𝐾 ∈ 𝑁 → ( 𝑦 ∈ 𝑁 ↔ 𝑦 ∈ ( ( 𝑁 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ) |
| 7 | 5 | eleq2d | ⊢ ( 𝐾 ∈ 𝑁 → ( 𝑧 ∈ 𝑁 ↔ 𝑧 ∈ ( ( 𝑁 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ) |
| 8 | 6 7 | anbi12d | ⊢ ( 𝐾 ∈ 𝑁 → ( ( 𝑦 ∈ 𝑁 ∧ 𝑧 ∈ 𝑁 ) ↔ ( 𝑦 ∈ ( ( 𝑁 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ∧ 𝑧 ∈ ( ( 𝑁 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( ( 𝑦 ∈ 𝑁 ∧ 𝑧 ∈ 𝑁 ) ↔ ( 𝑦 ∈ ( ( 𝑁 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ∧ 𝑧 ∈ ( ( 𝑁 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ) ) |
| 10 | elun | ⊢ ( 𝑦 ∈ ( ( 𝑁 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↔ ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∨ 𝑦 ∈ { 𝐾 } ) ) | |
| 11 | elun | ⊢ ( 𝑧 ∈ ( ( 𝑁 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↔ ( 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ∨ 𝑧 ∈ { 𝐾 } ) ) | |
| 12 | 1 2 | symgextfv | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) → ( 𝐸 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑦 ) ) ) |
| 13 | 12 | com12 | ⊢ ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) → ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( 𝐸 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑦 ) ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( 𝐸 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑦 ) ) ) |
| 15 | 14 | imp | ⊢ ( ( ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ) ∧ ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) ) → ( 𝐸 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑦 ) ) |
| 16 | 1 2 | symgextfv | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) → ( 𝐸 ‘ 𝑧 ) = ( 𝑍 ‘ 𝑧 ) ) ) |
| 17 | 16 | com12 | ⊢ ( 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) → ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( 𝐸 ‘ 𝑧 ) = ( 𝑍 ‘ 𝑧 ) ) ) |
| 18 | 17 | adantl | ⊢ ( ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( 𝐸 ‘ 𝑧 ) = ( 𝑍 ‘ 𝑧 ) ) ) |
| 19 | 18 | imp | ⊢ ( ( ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ) ∧ ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) ) → ( 𝐸 ‘ 𝑧 ) = ( 𝑍 ‘ 𝑧 ) ) |
| 20 | 15 19 | eqeq12d | ⊢ ( ( ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ) ∧ ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) ) → ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) ↔ ( 𝑍 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑧 ) ) ) |
| 21 | eqid | ⊢ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) = ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | |
| 22 | 21 1 | symgbasf1o | ⊢ ( 𝑍 ∈ 𝑆 → 𝑍 : ( 𝑁 ∖ { 𝐾 } ) –1-1-onto→ ( 𝑁 ∖ { 𝐾 } ) ) |
| 23 | f1of1 | ⊢ ( 𝑍 : ( 𝑁 ∖ { 𝐾 } ) –1-1-onto→ ( 𝑁 ∖ { 𝐾 } ) → 𝑍 : ( 𝑁 ∖ { 𝐾 } ) –1-1→ ( 𝑁 ∖ { 𝐾 } ) ) | |
| 24 | dff13 | ⊢ ( 𝑍 : ( 𝑁 ∖ { 𝐾 } ) –1-1→ ( 𝑁 ∖ { 𝐾 } ) ↔ ( 𝑍 : ( 𝑁 ∖ { 𝐾 } ) ⟶ ( 𝑁 ∖ { 𝐾 } ) ∧ ∀ 𝑖 ∈ ( 𝑁 ∖ { 𝐾 } ) ∀ 𝑗 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑍 ‘ 𝑖 ) = ( 𝑍 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) ) | |
| 25 | fveqeq2 | ⊢ ( 𝑖 = 𝑦 → ( ( 𝑍 ‘ 𝑖 ) = ( 𝑍 ‘ 𝑗 ) ↔ ( 𝑍 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑗 ) ) ) | |
| 26 | equequ1 | ⊢ ( 𝑖 = 𝑦 → ( 𝑖 = 𝑗 ↔ 𝑦 = 𝑗 ) ) | |
| 27 | 25 26 | imbi12d | ⊢ ( 𝑖 = 𝑦 → ( ( ( 𝑍 ‘ 𝑖 ) = ( 𝑍 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ↔ ( ( 𝑍 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑗 ) → 𝑦 = 𝑗 ) ) ) |
| 28 | fveq2 | ⊢ ( 𝑗 = 𝑧 → ( 𝑍 ‘ 𝑗 ) = ( 𝑍 ‘ 𝑧 ) ) | |
| 29 | 28 | eqeq2d | ⊢ ( 𝑗 = 𝑧 → ( ( 𝑍 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑗 ) ↔ ( 𝑍 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑧 ) ) ) |
| 30 | equequ2 | ⊢ ( 𝑗 = 𝑧 → ( 𝑦 = 𝑗 ↔ 𝑦 = 𝑧 ) ) | |
| 31 | 29 30 | imbi12d | ⊢ ( 𝑗 = 𝑧 → ( ( ( 𝑍 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑗 ) → 𝑦 = 𝑗 ) ↔ ( ( 𝑍 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
| 32 | 27 31 | rspc2va | ⊢ ( ( ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ) ∧ ∀ 𝑖 ∈ ( 𝑁 ∖ { 𝐾 } ) ∀ 𝑗 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑍 ‘ 𝑖 ) = ( 𝑍 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) → ( ( 𝑍 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 33 | 32 | expcom | ⊢ ( ∀ 𝑖 ∈ ( 𝑁 ∖ { 𝐾 } ) ∀ 𝑗 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑍 ‘ 𝑖 ) = ( 𝑍 ‘ 𝑗 ) → 𝑖 = 𝑗 ) → ( ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( ( 𝑍 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
| 34 | 33 | a1d | ⊢ ( ∀ 𝑖 ∈ ( 𝑁 ∖ { 𝐾 } ) ∀ 𝑗 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑍 ‘ 𝑖 ) = ( 𝑍 ‘ 𝑗 ) → 𝑖 = 𝑗 ) → ( 𝐾 ∈ 𝑁 → ( ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( ( 𝑍 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) ) |
| 35 | 24 34 | simplbiim | ⊢ ( 𝑍 : ( 𝑁 ∖ { 𝐾 } ) –1-1→ ( 𝑁 ∖ { 𝐾 } ) → ( 𝐾 ∈ 𝑁 → ( ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( ( 𝑍 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) ) |
| 36 | 22 23 35 | 3syl | ⊢ ( 𝑍 ∈ 𝑆 → ( 𝐾 ∈ 𝑁 → ( ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( ( 𝑍 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) ) |
| 37 | 36 | impcom | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( ( 𝑍 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
| 38 | 37 | impcom | ⊢ ( ( ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ) ∧ ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) ) → ( ( 𝑍 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 39 | 20 38 | sylbid | ⊢ ( ( ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ) ∧ ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) ) → ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 40 | 39 | ex | ⊢ ( ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
| 41 | 1 2 | symgextf1lem | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( ( 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑦 ∈ { 𝐾 } ) → ( 𝐸 ‘ 𝑧 ) ≠ ( 𝐸 ‘ 𝑦 ) ) ) |
| 42 | eqneqall | ⊢ ( ( 𝐸 ‘ 𝑧 ) = ( 𝐸 ‘ 𝑦 ) → ( ( 𝐸 ‘ 𝑧 ) ≠ ( 𝐸 ‘ 𝑦 ) → 𝑦 = 𝑧 ) ) | |
| 43 | 42 | eqcoms | ⊢ ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) → ( ( 𝐸 ‘ 𝑧 ) ≠ ( 𝐸 ‘ 𝑦 ) → 𝑦 = 𝑧 ) ) |
| 44 | 43 | com12 | ⊢ ( ( 𝐸 ‘ 𝑧 ) ≠ ( 𝐸 ‘ 𝑦 ) → ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 45 | 41 44 | syl6com | ⊢ ( ( 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑦 ∈ { 𝐾 } ) → ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
| 46 | 45 | ancoms | ⊢ ( ( 𝑦 ∈ { 𝐾 } ∧ 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
| 47 | 1 2 | symgextf1lem | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑧 ∈ { 𝐾 } ) → ( 𝐸 ‘ 𝑦 ) ≠ ( 𝐸 ‘ 𝑧 ) ) ) |
| 48 | eqneqall | ⊢ ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) → ( ( 𝐸 ‘ 𝑦 ) ≠ ( 𝐸 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) | |
| 49 | 48 | com12 | ⊢ ( ( 𝐸 ‘ 𝑦 ) ≠ ( 𝐸 ‘ 𝑧 ) → ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 50 | 47 49 | syl6com | ⊢ ( ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑧 ∈ { 𝐾 } ) → ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
| 51 | elsni | ⊢ ( 𝑦 ∈ { 𝐾 } → 𝑦 = 𝐾 ) | |
| 52 | elsni | ⊢ ( 𝑧 ∈ { 𝐾 } → 𝑧 = 𝐾 ) | |
| 53 | eqtr3 | ⊢ ( ( 𝑦 = 𝐾 ∧ 𝑧 = 𝐾 ) → 𝑦 = 𝑧 ) | |
| 54 | 53 | 2a1d | ⊢ ( ( 𝑦 = 𝐾 ∧ 𝑧 = 𝐾 ) → ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
| 55 | 51 52 54 | syl2an | ⊢ ( ( 𝑦 ∈ { 𝐾 } ∧ 𝑧 ∈ { 𝐾 } ) → ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
| 56 | 40 46 50 55 | ccase | ⊢ ( ( ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∨ 𝑦 ∈ { 𝐾 } ) ∧ ( 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ∨ 𝑧 ∈ { 𝐾 } ) ) → ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
| 57 | 10 11 56 | syl2anb | ⊢ ( ( 𝑦 ∈ ( ( 𝑁 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ∧ 𝑧 ∈ ( ( 𝑁 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) → ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
| 58 | 57 | com12 | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( ( 𝑦 ∈ ( ( 𝑁 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ∧ 𝑧 ∈ ( ( 𝑁 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) → ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
| 59 | 9 58 | sylbid | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( ( 𝑦 ∈ 𝑁 ∧ 𝑧 ∈ 𝑁 ) → ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
| 60 | 59 | ralrimivv | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ∀ 𝑦 ∈ 𝑁 ∀ 𝑧 ∈ 𝑁 ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 61 | dff13 | ⊢ ( 𝐸 : 𝑁 –1-1→ 𝑁 ↔ ( 𝐸 : 𝑁 ⟶ 𝑁 ∧ ∀ 𝑦 ∈ 𝑁 ∀ 𝑧 ∈ 𝑁 ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) | |
| 62 | 3 60 61 | sylanbrc | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → 𝐸 : 𝑁 –1-1→ 𝑁 ) |