This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function value of the extension of a permutation, fixing the additional element, for elements in the original domain. (Contributed by AV, 6-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgext.s | ⊢ 𝑆 = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) | |
| symgext.e | ⊢ 𝐸 = ( 𝑥 ∈ 𝑁 ↦ if ( 𝑥 = 𝐾 , 𝐾 , ( 𝑍 ‘ 𝑥 ) ) ) | ||
| Assertion | symgextfv | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( 𝑋 ∈ ( 𝑁 ∖ { 𝐾 } ) → ( 𝐸 ‘ 𝑋 ) = ( 𝑍 ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgext.s | ⊢ 𝑆 = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) | |
| 2 | symgext.e | ⊢ 𝐸 = ( 𝑥 ∈ 𝑁 ↦ if ( 𝑥 = 𝐾 , 𝐾 , ( 𝑍 ‘ 𝑥 ) ) ) | |
| 3 | eldifi | ⊢ ( 𝑋 ∈ ( 𝑁 ∖ { 𝐾 } ) → 𝑋 ∈ 𝑁 ) | |
| 4 | fvexd | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( 𝑍 ‘ 𝑋 ) ∈ V ) | |
| 5 | ifexg | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝑍 ‘ 𝑋 ) ∈ V ) → if ( 𝑋 = 𝐾 , 𝐾 , ( 𝑍 ‘ 𝑋 ) ) ∈ V ) | |
| 6 | 4 5 | syldan | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → if ( 𝑋 = 𝐾 , 𝐾 , ( 𝑍 ‘ 𝑋 ) ) ∈ V ) |
| 7 | eqeq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 = 𝐾 ↔ 𝑋 = 𝐾 ) ) | |
| 8 | fveq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝑍 ‘ 𝑥 ) = ( 𝑍 ‘ 𝑋 ) ) | |
| 9 | 7 8 | ifbieq2d | ⊢ ( 𝑥 = 𝑋 → if ( 𝑥 = 𝐾 , 𝐾 , ( 𝑍 ‘ 𝑥 ) ) = if ( 𝑋 = 𝐾 , 𝐾 , ( 𝑍 ‘ 𝑋 ) ) ) |
| 10 | 9 2 | fvmptg | ⊢ ( ( 𝑋 ∈ 𝑁 ∧ if ( 𝑋 = 𝐾 , 𝐾 , ( 𝑍 ‘ 𝑋 ) ) ∈ V ) → ( 𝐸 ‘ 𝑋 ) = if ( 𝑋 = 𝐾 , 𝐾 , ( 𝑍 ‘ 𝑋 ) ) ) |
| 11 | 3 6 10 | syl2anr | ⊢ ( ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) ∧ 𝑋 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( 𝐸 ‘ 𝑋 ) = if ( 𝑋 = 𝐾 , 𝐾 , ( 𝑍 ‘ 𝑋 ) ) ) |
| 12 | eldifsnneq | ⊢ ( 𝑋 ∈ ( 𝑁 ∖ { 𝐾 } ) → ¬ 𝑋 = 𝐾 ) | |
| 13 | 12 | adantl | ⊢ ( ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) ∧ 𝑋 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ¬ 𝑋 = 𝐾 ) |
| 14 | 13 | iffalsed | ⊢ ( ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) ∧ 𝑋 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → if ( 𝑋 = 𝐾 , 𝐾 , ( 𝑍 ‘ 𝑋 ) ) = ( 𝑍 ‘ 𝑋 ) ) |
| 15 | 11 14 | eqtrd | ⊢ ( ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) ∧ 𝑋 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( 𝐸 ‘ 𝑋 ) = ( 𝑍 ‘ 𝑋 ) ) |
| 16 | 15 | ex | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( 𝑋 ∈ ( 𝑁 ∖ { 𝐾 } ) → ( 𝐸 ‘ 𝑋 ) = ( 𝑍 ‘ 𝑋 ) ) ) |