This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a subword operation for arguments not being nonnegative integers is the empty set. (Contributed by AV, 2-Dec-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | swrdnnn0nd | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ¬ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ianor | ⊢ ( ¬ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ↔ ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ) ) | |
| 2 | ianor | ⊢ ( ¬ ( 𝐹 ∈ ℤ ∧ 0 ≤ 𝐹 ) ↔ ( ¬ 𝐹 ∈ ℤ ∨ ¬ 0 ≤ 𝐹 ) ) | |
| 3 | elnn0z | ⊢ ( 𝐹 ∈ ℕ0 ↔ ( 𝐹 ∈ ℤ ∧ 0 ≤ 𝐹 ) ) | |
| 4 | 2 3 | xchnxbir | ⊢ ( ¬ 𝐹 ∈ ℕ0 ↔ ( ¬ 𝐹 ∈ ℤ ∨ ¬ 0 ≤ 𝐹 ) ) |
| 5 | ianor | ⊢ ( ¬ ( 𝐿 ∈ ℤ ∧ 0 ≤ 𝐿 ) ↔ ( ¬ 𝐿 ∈ ℤ ∨ ¬ 0 ≤ 𝐿 ) ) | |
| 6 | elnn0z | ⊢ ( 𝐿 ∈ ℕ0 ↔ ( 𝐿 ∈ ℤ ∧ 0 ≤ 𝐿 ) ) | |
| 7 | 5 6 | xchnxbir | ⊢ ( ¬ 𝐿 ∈ ℕ0 ↔ ( ¬ 𝐿 ∈ ℤ ∨ ¬ 0 ≤ 𝐿 ) ) |
| 8 | 4 7 | orbi12i | ⊢ ( ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ) ↔ ( ( ¬ 𝐹 ∈ ℤ ∨ ¬ 0 ≤ 𝐹 ) ∨ ( ¬ 𝐿 ∈ ℤ ∨ ¬ 0 ≤ 𝐿 ) ) ) |
| 9 | or4 | ⊢ ( ( ( ¬ 𝐹 ∈ ℤ ∨ ¬ 0 ≤ 𝐹 ) ∨ ( ¬ 𝐿 ∈ ℤ ∨ ¬ 0 ≤ 𝐿 ) ) ↔ ( ( ¬ 𝐹 ∈ ℤ ∨ ¬ 𝐿 ∈ ℤ ) ∨ ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) ) ) | |
| 10 | ianor | ⊢ ( ¬ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ↔ ( ¬ 𝐹 ∈ ℤ ∨ ¬ 𝐿 ∈ ℤ ) ) | |
| 11 | 10 | bicomi | ⊢ ( ( ¬ 𝐹 ∈ ℤ ∨ ¬ 𝐿 ∈ ℤ ) ↔ ¬ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) |
| 12 | 11 | orbi1i | ⊢ ( ( ( ¬ 𝐹 ∈ ℤ ∨ ¬ 𝐿 ∈ ℤ ) ∨ ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) ) ↔ ( ¬ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∨ ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) ) ) |
| 13 | 9 12 | bitri | ⊢ ( ( ( ¬ 𝐹 ∈ ℤ ∨ ¬ 0 ≤ 𝐹 ) ∨ ( ¬ 𝐿 ∈ ℤ ∨ ¬ 0 ≤ 𝐿 ) ) ↔ ( ¬ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∨ ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) ) ) |
| 14 | 8 13 | bitri | ⊢ ( ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ) ↔ ( ¬ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∨ ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) ) ) |
| 15 | 1 14 | bitri | ⊢ ( ¬ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ↔ ( ¬ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∨ ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) ) ) |
| 16 | swrdnznd | ⊢ ( ¬ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) | |
| 17 | 16 | a1d | ⊢ ( ¬ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 18 | notnotb | ⊢ ( ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ↔ ¬ ¬ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) | |
| 19 | zre | ⊢ ( 𝐹 ∈ ℤ → 𝐹 ∈ ℝ ) | |
| 20 | 0red | ⊢ ( 𝐹 ∈ ℤ → 0 ∈ ℝ ) | |
| 21 | 19 20 | jca | ⊢ ( 𝐹 ∈ ℤ → ( 𝐹 ∈ ℝ ∧ 0 ∈ ℝ ) ) |
| 22 | 21 | 3ad2ant2 | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝐹 ∈ ℝ ∧ 0 ∈ ℝ ) ) |
| 23 | ltnle | ⊢ ( ( 𝐹 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐹 < 0 ↔ ¬ 0 ≤ 𝐹 ) ) | |
| 24 | 22 23 | syl | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝐹 < 0 ↔ ¬ 0 ≤ 𝐹 ) ) |
| 25 | orc | ⊢ ( 𝐹 < 0 → ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ) ) | |
| 26 | 24 25 | biimtrrdi | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ¬ 0 ≤ 𝐹 → ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ) ) ) |
| 27 | 26 | com12 | ⊢ ( ¬ 0 ≤ 𝐹 → ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ) ) ) |
| 28 | notnotb | ⊢ ( 0 ≤ 𝐹 ↔ ¬ ¬ 0 ≤ 𝐹 ) | |
| 29 | 28 | a1i | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 0 ≤ 𝐹 ↔ ¬ ¬ 0 ≤ 𝐹 ) ) |
| 30 | zre | ⊢ ( 𝐿 ∈ ℤ → 𝐿 ∈ ℝ ) | |
| 31 | 0red | ⊢ ( 𝐿 ∈ ℤ → 0 ∈ ℝ ) | |
| 32 | 30 31 | jca | ⊢ ( 𝐿 ∈ ℤ → ( 𝐿 ∈ ℝ ∧ 0 ∈ ℝ ) ) |
| 33 | 32 | 3ad2ant3 | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝐿 ∈ ℝ ∧ 0 ∈ ℝ ) ) |
| 34 | ltnle | ⊢ ( ( 𝐿 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐿 < 0 ↔ ¬ 0 ≤ 𝐿 ) ) | |
| 35 | 33 34 | syl | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝐿 < 0 ↔ ¬ 0 ≤ 𝐿 ) ) |
| 36 | 29 35 | anbi12d | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ( 0 ≤ 𝐹 ∧ 𝐿 < 0 ) ↔ ( ¬ ¬ 0 ≤ 𝐹 ∧ ¬ 0 ≤ 𝐿 ) ) ) |
| 37 | 30 | 3ad2ant3 | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → 𝐿 ∈ ℝ ) |
| 38 | 0red | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → 0 ∈ ℝ ) | |
| 39 | 19 | 3ad2ant2 | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → 𝐹 ∈ ℝ ) |
| 40 | ltleletr | ⊢ ( ( 𝐿 ∈ ℝ ∧ 0 ∈ ℝ ∧ 𝐹 ∈ ℝ ) → ( ( 𝐿 < 0 ∧ 0 ≤ 𝐹 ) → 𝐿 ≤ 𝐹 ) ) | |
| 41 | 37 38 39 40 | syl3anc | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ( 𝐿 < 0 ∧ 0 ≤ 𝐹 ) → 𝐿 ≤ 𝐹 ) ) |
| 42 | olc | ⊢ ( 𝐿 ≤ 𝐹 → ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ) ) | |
| 43 | 41 42 | syl6 | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ( 𝐿 < 0 ∧ 0 ≤ 𝐹 ) → ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ) ) ) |
| 44 | 43 | ancomsd | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ( 0 ≤ 𝐹 ∧ 𝐿 < 0 ) → ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ) ) ) |
| 45 | 36 44 | sylbird | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ( ¬ ¬ 0 ≤ 𝐹 ∧ ¬ 0 ≤ 𝐿 ) → ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ) ) ) |
| 46 | 45 | com12 | ⊢ ( ( ¬ ¬ 0 ≤ 𝐹 ∧ ¬ 0 ≤ 𝐿 ) → ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ) ) ) |
| 47 | 27 46 | jaoi3 | ⊢ ( ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) → ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ) ) ) |
| 48 | 47 | impcom | ⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∧ ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) ) → ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ) ) |
| 49 | 48 | orcd | ⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∧ ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) ) → ( ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ) ∨ ( ♯ ‘ 𝑆 ) < 𝐿 ) ) |
| 50 | df-3or | ⊢ ( ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ ( ♯ ‘ 𝑆 ) < 𝐿 ) ↔ ( ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ) ∨ ( ♯ ‘ 𝑆 ) < 𝐿 ) ) | |
| 51 | 49 50 | sylibr | ⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∧ ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) ) → ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ ( ♯ ‘ 𝑆 ) < 𝐿 ) ) |
| 52 | swrdnd | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ ( ♯ ‘ 𝑆 ) < 𝐿 ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) | |
| 53 | 52 | imp | ⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∧ ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ ( ♯ ‘ 𝑆 ) < 𝐿 ) ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) |
| 54 | 51 53 | syldan | ⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∧ ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) |
| 55 | 54 | ex | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 56 | 55 | 3expb | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) → ( ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 57 | 56 | expcom | ⊢ ( ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝑆 ∈ Word 𝑉 → ( ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) ) |
| 58 | 57 | com23 | ⊢ ( ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) ) |
| 59 | 18 58 | sylbir | ⊢ ( ¬ ¬ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) ) |
| 60 | 59 | imp | ⊢ ( ( ¬ ¬ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∧ ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 61 | 17 60 | jaoi3 | ⊢ ( ( ¬ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∨ ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 62 | 15 61 | sylbi | ⊢ ( ¬ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 63 | 62 | impcom | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ¬ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) |