This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a subword operation for inproper arguments is the empty set. (Contributed by AV, 2-Dec-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | swrdnd0 | ⊢ ( 𝑆 ∈ Word 𝑉 → ( ¬ ( 𝐹 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ianor | ⊢ ( ¬ ( 𝐹 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ↔ ( ¬ 𝐹 ∈ ( 0 ... 𝐿 ) ∨ ¬ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) | |
| 2 | 3ianor | ⊢ ( ¬ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) ↔ ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹 ≤ 𝐿 ) ) | |
| 3 | elfz2nn0 | ⊢ ( 𝐹 ∈ ( 0 ... 𝐿 ) ↔ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) ) | |
| 4 | 2 3 | xchnxbir | ⊢ ( ¬ 𝐹 ∈ ( 0 ... 𝐿 ) ↔ ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹 ≤ 𝐿 ) ) |
| 5 | 3ianor | ⊢ ( ¬ ( 𝐿 ∈ ℕ0 ∧ ( ♯ ‘ 𝑆 ) ∈ ℕ0 ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ↔ ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑆 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ) | |
| 6 | elfz2nn0 | ⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ↔ ( 𝐿 ∈ ℕ0 ∧ ( ♯ ‘ 𝑆 ) ∈ ℕ0 ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ) | |
| 7 | 5 6 | xchnxbir | ⊢ ( ¬ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ↔ ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑆 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ) |
| 8 | 4 7 | orbi12i | ⊢ ( ( ¬ 𝐹 ∈ ( 0 ... 𝐿 ) ∨ ¬ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ↔ ( ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹 ≤ 𝐿 ) ∨ ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑆 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ) ) |
| 9 | 1 8 | bitri | ⊢ ( ¬ ( 𝐹 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ↔ ( ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹 ≤ 𝐿 ) ∨ ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑆 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ) ) |
| 10 | df-3or | ⊢ ( ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹 ≤ 𝐿 ) ↔ ( ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ) ∨ ¬ 𝐹 ≤ 𝐿 ) ) | |
| 11 | ianor | ⊢ ( ¬ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ↔ ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ) ) | |
| 12 | swrdnnn0nd | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ¬ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) | |
| 13 | 12 | expcom | ⊢ ( ¬ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 14 | 11 13 | sylbir | ⊢ ( ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 15 | anor | ⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ↔ ¬ ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ) ) | |
| 16 | nn0re | ⊢ ( 𝐿 ∈ ℕ0 → 𝐿 ∈ ℝ ) | |
| 17 | nn0re | ⊢ ( 𝐹 ∈ ℕ0 → 𝐹 ∈ ℝ ) | |
| 18 | ltnle | ⊢ ( ( 𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ ) → ( 𝐿 < 𝐹 ↔ ¬ 𝐹 ≤ 𝐿 ) ) | |
| 19 | 16 17 18 | syl2anr | ⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) → ( 𝐿 < 𝐹 ↔ ¬ 𝐹 ≤ 𝐿 ) ) |
| 20 | nn0z | ⊢ ( 𝐹 ∈ ℕ0 → 𝐹 ∈ ℤ ) | |
| 21 | nn0z | ⊢ ( 𝐿 ∈ ℕ0 → 𝐿 ∈ ℤ ) | |
| 22 | 20 21 | anim12i | ⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) → ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) |
| 23 | 22 | anim2i | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ) → ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) ) |
| 24 | 3anass | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ↔ ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) ) | |
| 25 | 23 24 | sylibr | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ) → ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) |
| 26 | 25 | adantr | ⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝐿 < 𝐹 ) → ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) |
| 27 | 17 16 | anim12ci | ⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) → ( 𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ ) ) |
| 28 | 27 | adantl | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ) → ( 𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ ) ) |
| 29 | ltle | ⊢ ( ( 𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ ) → ( 𝐿 < 𝐹 → 𝐿 ≤ 𝐹 ) ) | |
| 30 | 28 29 | syl | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ) → ( 𝐿 < 𝐹 → 𝐿 ≤ 𝐹 ) ) |
| 31 | 30 | imp | ⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝐿 < 𝐹 ) → 𝐿 ≤ 𝐹 ) |
| 32 | 31 | 3mix2d | ⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝐿 < 𝐹 ) → ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ ( ♯ ‘ 𝑆 ) < 𝐿 ) ) |
| 33 | swrdnd | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ ( ♯ ‘ 𝑆 ) < 𝐿 ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) | |
| 34 | 26 32 33 | sylc | ⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝐿 < 𝐹 ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) |
| 35 | 34 | ex | ⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ) → ( 𝐿 < 𝐹 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 36 | 35 | expcom | ⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑆 ∈ Word 𝑉 → ( 𝐿 < 𝐹 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) ) |
| 37 | 36 | com23 | ⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) → ( 𝐿 < 𝐹 → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) ) |
| 38 | 19 37 | sylbird | ⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) → ( ¬ 𝐹 ≤ 𝐿 → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) ) |
| 39 | 15 38 | sylbir | ⊢ ( ¬ ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ) → ( ¬ 𝐹 ≤ 𝐿 → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) ) |
| 40 | 39 | imp | ⊢ ( ( ¬ ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ) ∧ ¬ 𝐹 ≤ 𝐿 ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 41 | 14 40 | jaoi3 | ⊢ ( ( ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ) ∨ ¬ 𝐹 ≤ 𝐿 ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 42 | 10 41 | sylbi | ⊢ ( ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹 ≤ 𝐿 ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 43 | 3anor | ⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) ↔ ¬ ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹 ≤ 𝐿 ) ) | |
| 44 | pm2.24 | ⊢ ( 𝐿 ∈ ℕ0 → ( ¬ 𝐿 ∈ ℕ0 → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) ) | |
| 45 | 44 | 3ad2ant2 | ⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) → ( ¬ 𝐿 ∈ ℕ0 → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) ) |
| 46 | 45 | com12 | ⊢ ( ¬ 𝐿 ∈ ℕ0 → ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) ) |
| 47 | pm2.24 | ⊢ ( ( ♯ ‘ 𝑆 ) ∈ ℕ0 → ( ¬ ( ♯ ‘ 𝑆 ) ∈ ℕ0 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) | |
| 48 | lencl | ⊢ ( 𝑆 ∈ Word 𝑉 → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) | |
| 49 | 47 48 | syl11 | ⊢ ( ¬ ( ♯ ‘ 𝑆 ) ∈ ℕ0 → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 50 | 49 | a1d | ⊢ ( ¬ ( ♯ ‘ 𝑆 ) ∈ ℕ0 → ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) ) |
| 51 | 48 | nn0red | ⊢ ( 𝑆 ∈ Word 𝑉 → ( ♯ ‘ 𝑆 ) ∈ ℝ ) |
| 52 | 16 | 3ad2ant2 | ⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) → 𝐿 ∈ ℝ ) |
| 53 | ltnle | ⊢ ( ( ( ♯ ‘ 𝑆 ) ∈ ℝ ∧ 𝐿 ∈ ℝ ) → ( ( ♯ ‘ 𝑆 ) < 𝐿 ↔ ¬ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ) | |
| 54 | 51 52 53 | syl2anr | ⊢ ( ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) ∧ 𝑆 ∈ Word 𝑉 ) → ( ( ♯ ‘ 𝑆 ) < 𝐿 ↔ ¬ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ) |
| 55 | simpr | ⊢ ( ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) ∧ 𝑆 ∈ Word 𝑉 ) → 𝑆 ∈ Word 𝑉 ) | |
| 56 | 20 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) → 𝐹 ∈ ℤ ) |
| 57 | 56 | adantr | ⊢ ( ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) ∧ 𝑆 ∈ Word 𝑉 ) → 𝐹 ∈ ℤ ) |
| 58 | 21 | 3ad2ant2 | ⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) → 𝐿 ∈ ℤ ) |
| 59 | 58 | adantr | ⊢ ( ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) ∧ 𝑆 ∈ Word 𝑉 ) → 𝐿 ∈ ℤ ) |
| 60 | 55 57 59 | 3jca | ⊢ ( ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) ∧ 𝑆 ∈ Word 𝑉 ) → ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) |
| 61 | 3mix3 | ⊢ ( ( ♯ ‘ 𝑆 ) < 𝐿 → ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ ( ♯ ‘ 𝑆 ) < 𝐿 ) ) | |
| 62 | 60 61 33 | syl2im | ⊢ ( ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) ∧ 𝑆 ∈ Word 𝑉 ) → ( ( ♯ ‘ 𝑆 ) < 𝐿 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 63 | 54 62 | sylbird | ⊢ ( ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) ∧ 𝑆 ∈ Word 𝑉 ) → ( ¬ 𝐿 ≤ ( ♯ ‘ 𝑆 ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 64 | 63 | com12 | ⊢ ( ¬ 𝐿 ≤ ( ♯ ‘ 𝑆 ) → ( ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) ∧ 𝑆 ∈ Word 𝑉 ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 65 | 64 | expd | ⊢ ( ¬ 𝐿 ≤ ( ♯ ‘ 𝑆 ) → ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) ) |
| 66 | 46 50 65 | 3jaoi | ⊢ ( ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑆 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) ) |
| 67 | 43 66 | biimtrrid | ⊢ ( ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑆 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → ( ¬ ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹 ≤ 𝐿 ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) ) |
| 68 | 67 | impcom | ⊢ ( ( ¬ ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹 ≤ 𝐿 ) ∧ ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑆 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 69 | 42 68 | jaoi3 | ⊢ ( ( ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹 ≤ 𝐿 ) ∨ ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑆 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 70 | 69 | com12 | ⊢ ( 𝑆 ∈ Word 𝑉 → ( ( ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹 ≤ 𝐿 ) ∨ ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑆 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 71 | 9 70 | biimtrid | ⊢ ( 𝑆 ∈ Word 𝑉 → ( ¬ ( 𝐹 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |