This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a subword operation for noninteger arguments is the empty set. (This is due to our definition of function values for out-of-domain arguments, see ndmfv ). (Contributed by AV, 2-Dec-2022) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | swrdnznd | ⊢ ( ¬ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp | ⊢ ( 〈 𝐹 , 𝐿 〉 ∈ ( ℤ × ℤ ) ↔ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) | |
| 2 | 1 | biimpi | ⊢ ( 〈 𝐹 , 𝐿 〉 ∈ ( ℤ × ℤ ) → ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) |
| 3 | 2 | adantl | ⊢ ( ( 𝑆 ∈ V ∧ 〈 𝐹 , 𝐿 〉 ∈ ( ℤ × ℤ ) ) → ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) |
| 4 | df-substr | ⊢ substr = ( 𝑠 ∈ V , 𝑏 ∈ ( ℤ × ℤ ) ↦ if ( ( ( 1st ‘ 𝑏 ) ..^ ( 2nd ‘ 𝑏 ) ) ⊆ dom 𝑠 , ( 𝑥 ∈ ( 0 ..^ ( ( 2nd ‘ 𝑏 ) − ( 1st ‘ 𝑏 ) ) ) ↦ ( 𝑠 ‘ ( 𝑥 + ( 1st ‘ 𝑏 ) ) ) ) , ∅ ) ) | |
| 5 | 4 | mpondm0 | ⊢ ( ¬ ( 𝑆 ∈ V ∧ 〈 𝐹 , 𝐿 〉 ∈ ( ℤ × ℤ ) ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) |
| 6 | 3 5 | nsyl5 | ⊢ ( ¬ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) |