This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the subword extractor is the empty set (undefined) if the range is not valid. (Contributed by Alexander van der Vekens, 16-Mar-2018) (Proof shortened by AV, 2-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | swrdnd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) → ( 𝑊 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3orcomb | ⊢ ( ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ↔ ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ∨ 𝐿 ≤ 𝐹 ) ) | |
| 2 | df-3or | ⊢ ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ∨ 𝐿 ≤ 𝐹 ) ↔ ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ∨ 𝐿 ≤ 𝐹 ) ) | |
| 3 | 1 2 | bitri | ⊢ ( ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ↔ ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ∨ 𝐿 ≤ 𝐹 ) ) |
| 4 | swrdlend | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝐿 ≤ 𝐹 → ( 𝑊 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) | |
| 5 | 4 | com12 | ⊢ ( 𝐿 ≤ 𝐹 → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝑊 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 6 | swrdval | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝑊 substr 〈 𝐹 , 𝐿 〉 ) = if ( ( 𝐹 ..^ 𝐿 ) ⊆ dom 𝑊 , ( 𝑖 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ↦ ( 𝑊 ‘ ( 𝑖 + 𝐹 ) ) ) , ∅ ) ) | |
| 7 | 6 | adantl | ⊢ ( ( ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ∧ ¬ 𝐿 ≤ 𝐹 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) → ( 𝑊 substr 〈 𝐹 , 𝐿 〉 ) = if ( ( 𝐹 ..^ 𝐿 ) ⊆ dom 𝑊 , ( 𝑖 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ↦ ( 𝑊 ‘ ( 𝑖 + 𝐹 ) ) ) , ∅ ) ) |
| 8 | zre | ⊢ ( 𝐹 ∈ ℤ → 𝐹 ∈ ℝ ) | |
| 9 | 0red | ⊢ ( 𝐹 ∈ ℤ → 0 ∈ ℝ ) | |
| 10 | 8 9 | ltnled | ⊢ ( 𝐹 ∈ ℤ → ( 𝐹 < 0 ↔ ¬ 0 ≤ 𝐹 ) ) |
| 11 | 10 | 3ad2ant2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝐹 < 0 ↔ ¬ 0 ≤ 𝐹 ) ) |
| 12 | lencl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 13 | 12 | nn0red | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℝ ) |
| 14 | zre | ⊢ ( 𝐿 ∈ ℤ → 𝐿 ∈ ℝ ) | |
| 15 | 13 14 | anim12i | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) → ( ( ♯ ‘ 𝑊 ) ∈ ℝ ∧ 𝐿 ∈ ℝ ) ) |
| 16 | 15 | 3adant2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ( ♯ ‘ 𝑊 ) ∈ ℝ ∧ 𝐿 ∈ ℝ ) ) |
| 17 | ltnle | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℝ ∧ 𝐿 ∈ ℝ ) → ( ( ♯ ‘ 𝑊 ) < 𝐿 ↔ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) | |
| 18 | 16 17 | syl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ( ♯ ‘ 𝑊 ) < 𝐿 ↔ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) |
| 19 | 11 18 | orbi12d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ↔ ( ¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) ) |
| 20 | 19 | biimpcd | ⊢ ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) ) |
| 21 | 20 | adantr | ⊢ ( ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ∧ ¬ 𝐿 ≤ 𝐹 ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) ) |
| 22 | 21 | imp | ⊢ ( ( ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ∧ ¬ 𝐿 ≤ 𝐹 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) → ( ¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) |
| 23 | ianor | ⊢ ( ¬ ( 0 ≤ 𝐹 ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ↔ ( ¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) | |
| 24 | 22 23 | sylibr | ⊢ ( ( ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ∧ ¬ 𝐿 ≤ 𝐹 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) → ¬ ( 0 ≤ 𝐹 ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) |
| 25 | 3simpc | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) | |
| 26 | 12 | nn0zd | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
| 27 | 0z | ⊢ 0 ∈ ℤ | |
| 28 | 26 27 | jctil | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 0 ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℤ ) ) |
| 29 | 28 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 0 ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℤ ) ) |
| 30 | ltnle | ⊢ ( ( 𝐹 ∈ ℝ ∧ 𝐿 ∈ ℝ ) → ( 𝐹 < 𝐿 ↔ ¬ 𝐿 ≤ 𝐹 ) ) | |
| 31 | 8 14 30 | syl2an | ⊢ ( ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝐹 < 𝐿 ↔ ¬ 𝐿 ≤ 𝐹 ) ) |
| 32 | 31 | 3adant1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝐹 < 𝐿 ↔ ¬ 𝐿 ≤ 𝐹 ) ) |
| 33 | 32 | biimprcd | ⊢ ( ¬ 𝐿 ≤ 𝐹 → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → 𝐹 < 𝐿 ) ) |
| 34 | 33 | adantl | ⊢ ( ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ∧ ¬ 𝐿 ≤ 𝐹 ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → 𝐹 < 𝐿 ) ) |
| 35 | 34 | imp | ⊢ ( ( ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ∧ ¬ 𝐿 ≤ 𝐹 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) → 𝐹 < 𝐿 ) |
| 36 | ssfzo12bi | ⊢ ( ( ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∧ ( 0 ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℤ ) ∧ 𝐹 < 𝐿 ) → ( ( 𝐹 ..^ 𝐿 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( 0 ≤ 𝐹 ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) ) | |
| 37 | 25 29 35 36 | syl2an23an | ⊢ ( ( ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ∧ ¬ 𝐿 ≤ 𝐹 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) → ( ( 𝐹 ..^ 𝐿 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( 0 ≤ 𝐹 ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) ) |
| 38 | 24 37 | mtbird | ⊢ ( ( ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ∧ ¬ 𝐿 ≤ 𝐹 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) → ¬ ( 𝐹 ..^ 𝐿 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 39 | wrddm | ⊢ ( 𝑊 ∈ Word 𝑉 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 40 | 39 | sseq2d | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ( 𝐹 ..^ 𝐿 ) ⊆ dom 𝑊 ↔ ( 𝐹 ..^ 𝐿 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 41 | 40 | notbid | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ¬ ( 𝐹 ..^ 𝐿 ) ⊆ dom 𝑊 ↔ ¬ ( 𝐹 ..^ 𝐿 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 42 | 41 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ¬ ( 𝐹 ..^ 𝐿 ) ⊆ dom 𝑊 ↔ ¬ ( 𝐹 ..^ 𝐿 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 43 | 42 | adantl | ⊢ ( ( ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ∧ ¬ 𝐿 ≤ 𝐹 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) → ( ¬ ( 𝐹 ..^ 𝐿 ) ⊆ dom 𝑊 ↔ ¬ ( 𝐹 ..^ 𝐿 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 44 | 38 43 | mpbird | ⊢ ( ( ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ∧ ¬ 𝐿 ≤ 𝐹 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) → ¬ ( 𝐹 ..^ 𝐿 ) ⊆ dom 𝑊 ) |
| 45 | 44 | iffalsed | ⊢ ( ( ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ∧ ¬ 𝐿 ≤ 𝐹 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) → if ( ( 𝐹 ..^ 𝐿 ) ⊆ dom 𝑊 , ( 𝑖 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ↦ ( 𝑊 ‘ ( 𝑖 + 𝐹 ) ) ) , ∅ ) = ∅ ) |
| 46 | 7 45 | eqtrd | ⊢ ( ( ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ∧ ¬ 𝐿 ≤ 𝐹 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) → ( 𝑊 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) |
| 47 | 46 | exp31 | ⊢ ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) → ( ¬ 𝐿 ≤ 𝐹 → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝑊 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) ) |
| 48 | 47 | impcom | ⊢ ( ( ¬ 𝐿 ≤ 𝐹 ∧ ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝑊 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 49 | 5 48 | jaoi3 | ⊢ ( ( 𝐿 ≤ 𝐹 ∨ ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝑊 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 50 | 49 | orcoms | ⊢ ( ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ∨ 𝐿 ≤ 𝐹 ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝑊 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 51 | 3 50 | sylbi | ⊢ ( ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝑊 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 52 | 51 | com12 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) → ( 𝑊 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |