This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Triple conjunction expressed in terms of triple disjunction. (Contributed by Jeff Hankins, 15-Aug-2009) (Proof shortened by Wolf Lammen, 8-Apr-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3anor | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ¬ ( ¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ianor | ⊢ ( ¬ ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒 ) ) | |
| 2 | 1 | con1bii | ⊢ ( ¬ ( ¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒 ) ↔ ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ) |
| 3 | 2 | bicomi | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ¬ ( ¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒 ) ) |