This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Mapping of words commutes with the substring operation. (Contributed by AV, 11-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | swrdco | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) = ( ( 𝐹 ∘ 𝑊 ) substr 〈 𝑀 , 𝑁 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) | |
| 2 | 1 | 3ad2ant3 | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝐹 Fn 𝐴 ) |
| 3 | swrdvalfn | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) Fn ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) | |
| 4 | 3 | 3expb | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) Fn ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) |
| 5 | 4 | 3adant3 | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) Fn ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) |
| 6 | swrdrn | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ran ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ⊆ 𝐴 ) | |
| 7 | 6 | 3expb | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) → ran ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ⊆ 𝐴 ) |
| 8 | 7 | 3adant3 | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ran ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ⊆ 𝐴 ) |
| 9 | fnco | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) Fn ( 0 ..^ ( 𝑁 − 𝑀 ) ) ∧ ran ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ⊆ 𝐴 ) → ( 𝐹 ∘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) Fn ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) | |
| 10 | 2 5 8 9 | syl3anc | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) Fn ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) |
| 11 | wrdco | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝑊 ) ∈ Word 𝐵 ) | |
| 12 | 11 | 3adant2 | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝑊 ) ∈ Word 𝐵 ) |
| 13 | simp2l | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝑀 ∈ ( 0 ... 𝑁 ) ) | |
| 14 | lenco | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) = ( ♯ ‘ 𝑊 ) ) | |
| 15 | 14 | eqcomd | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) |
| 16 | 15 | oveq2d | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 0 ... ( ♯ ‘ 𝑊 ) ) = ( 0 ... ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) |
| 17 | 16 | eleq2d | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ↔ 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) |
| 18 | 17 | biimpd | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) |
| 19 | 18 | expcom | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝑊 ∈ Word 𝐴 → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) ) |
| 20 | 19 | com13 | ⊢ ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ∈ Word 𝐴 → ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) ) |
| 21 | 20 | adantl | ⊢ ( ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ∈ Word 𝐴 → ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) ) |
| 22 | 21 | 3imp21 | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) |
| 23 | swrdvalfn | ⊢ ( ( ( 𝐹 ∘ 𝑊 ) ∈ Word 𝐵 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) → ( ( 𝐹 ∘ 𝑊 ) substr 〈 𝑀 , 𝑁 〉 ) Fn ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) | |
| 24 | 12 13 22 23 | syl3anc | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ( 𝐹 ∘ 𝑊 ) substr 〈 𝑀 , 𝑁 〉 ) Fn ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) |
| 25 | 3anass | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ↔ ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) ) | |
| 26 | 25 | biimpri | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ∈ Word 𝐴 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) |
| 27 | 26 | 3adant3 | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝑊 ∈ Word 𝐴 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) |
| 28 | swrdfv | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑖 ) = ( 𝑊 ‘ ( 𝑖 + 𝑀 ) ) ) | |
| 29 | 28 | fveq2d | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → ( 𝐹 ‘ ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑖 ) ) = ( 𝐹 ‘ ( 𝑊 ‘ ( 𝑖 + 𝑀 ) ) ) ) |
| 30 | 27 29 | sylan | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → ( 𝐹 ‘ ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑖 ) ) = ( 𝐹 ‘ ( 𝑊 ‘ ( 𝑖 + 𝑀 ) ) ) ) |
| 31 | wrdfn | ⊢ ( 𝑊 ∈ Word 𝐴 → 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 32 | 31 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 33 | elfzodifsumelfzo | ⊢ ( ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑖 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) → ( 𝑖 + 𝑀 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | |
| 34 | 33 | 3ad2ant2 | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝑖 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) → ( 𝑖 + 𝑀 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 35 | 34 | imp | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → ( 𝑖 + 𝑀 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 36 | fvco2 | ⊢ ( ( 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑖 + 𝑀 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝑊 ) ‘ ( 𝑖 + 𝑀 ) ) = ( 𝐹 ‘ ( 𝑊 ‘ ( 𝑖 + 𝑀 ) ) ) ) | |
| 37 | 32 35 36 | syl2an2r | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → ( ( 𝐹 ∘ 𝑊 ) ‘ ( 𝑖 + 𝑀 ) ) = ( 𝐹 ‘ ( 𝑊 ‘ ( 𝑖 + 𝑀 ) ) ) ) |
| 38 | 30 37 | eqtr4d | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → ( 𝐹 ‘ ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑖 ) ) = ( ( 𝐹 ∘ 𝑊 ) ‘ ( 𝑖 + 𝑀 ) ) ) |
| 39 | fvco2 | ⊢ ( ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) Fn ( 0 ..^ ( 𝑁 − 𝑀 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → ( ( 𝐹 ∘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) ‘ 𝑖 ) = ( 𝐹 ‘ ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑖 ) ) ) | |
| 40 | 5 39 | sylan | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → ( ( 𝐹 ∘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) ‘ 𝑖 ) = ( 𝐹 ‘ ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑖 ) ) ) |
| 41 | 14 | ancoms | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑊 ∈ Word 𝐴 ) → ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) = ( ♯ ‘ 𝑊 ) ) |
| 42 | 41 | eqcomd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑊 ∈ Word 𝐴 ) → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) |
| 43 | 42 | oveq2d | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑊 ∈ Word 𝐴 ) → ( 0 ... ( ♯ ‘ 𝑊 ) ) = ( 0 ... ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) |
| 44 | 43 | eleq2d | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑊 ∈ Word 𝐴 ) → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ↔ 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) |
| 45 | 44 | biimpd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑊 ∈ Word 𝐴 ) → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) |
| 46 | 45 | ex | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝑊 ∈ Word 𝐴 → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) ) |
| 47 | 46 | com13 | ⊢ ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ∈ Word 𝐴 → ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) ) |
| 48 | 47 | adantl | ⊢ ( ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ∈ Word 𝐴 → ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) ) |
| 49 | 48 | 3imp21 | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) |
| 50 | 12 13 49 | 3jca | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ( 𝐹 ∘ 𝑊 ) ∈ Word 𝐵 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) |
| 51 | swrdfv | ⊢ ( ( ( ( 𝐹 ∘ 𝑊 ) ∈ Word 𝐵 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → ( ( ( 𝐹 ∘ 𝑊 ) substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑖 ) = ( ( 𝐹 ∘ 𝑊 ) ‘ ( 𝑖 + 𝑀 ) ) ) | |
| 52 | 50 51 | sylan | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → ( ( ( 𝐹 ∘ 𝑊 ) substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑖 ) = ( ( 𝐹 ∘ 𝑊 ) ‘ ( 𝑖 + 𝑀 ) ) ) |
| 53 | 38 40 52 | 3eqtr4d | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → ( ( 𝐹 ∘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) ‘ 𝑖 ) = ( ( ( 𝐹 ∘ 𝑊 ) substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑖 ) ) |
| 54 | 10 24 53 | eqfnfvd | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ) = ( ( 𝐹 ∘ 𝑊 ) substr 〈 𝑀 , 𝑁 〉 ) ) |