This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Mapping of words commutes with the prefix operation. (Contributed by AV, 15-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pfxco | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ ( 𝑊 prefix 𝑁 ) ) = ( ( 𝐹 ∘ 𝑊 ) prefix 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfznn0 | ⊢ ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → 𝑁 ∈ ℕ0 ) | |
| 2 | 1 | 3ad2ant2 | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝑁 ∈ ℕ0 ) |
| 3 | 0elfz | ⊢ ( 𝑁 ∈ ℕ0 → 0 ∈ ( 0 ... 𝑁 ) ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 0 ∈ ( 0 ... 𝑁 ) ) |
| 5 | simp2 | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | |
| 6 | 4 5 | jca | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 0 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) |
| 7 | swrdco | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ ( 0 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ ( 𝑊 substr 〈 0 , 𝑁 〉 ) ) = ( ( 𝐹 ∘ 𝑊 ) substr 〈 0 , 𝑁 〉 ) ) | |
| 8 | 6 7 | syld3an2 | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ ( 𝑊 substr 〈 0 , 𝑁 〉 ) ) = ( ( 𝐹 ∘ 𝑊 ) substr 〈 0 , 𝑁 〉 ) ) |
| 9 | pfxval | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑊 prefix 𝑁 ) = ( 𝑊 substr 〈 0 , 𝑁 〉 ) ) | |
| 10 | 1 9 | sylan2 | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 prefix 𝑁 ) = ( 𝑊 substr 〈 0 , 𝑁 〉 ) ) |
| 11 | 10 | coeq2d | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝐹 ∘ ( 𝑊 prefix 𝑁 ) ) = ( 𝐹 ∘ ( 𝑊 substr 〈 0 , 𝑁 〉 ) ) ) |
| 12 | 11 | 3adant3 | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ ( 𝑊 prefix 𝑁 ) ) = ( 𝐹 ∘ ( 𝑊 substr 〈 0 , 𝑁 〉 ) ) ) |
| 13 | ffun | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → Fun 𝐹 ) | |
| 14 | 13 | anim2i | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝑊 ∈ Word 𝐴 ∧ Fun 𝐹 ) ) |
| 15 | 14 | ancomd | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( Fun 𝐹 ∧ 𝑊 ∈ Word 𝐴 ) ) |
| 16 | 15 | 3adant2 | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( Fun 𝐹 ∧ 𝑊 ∈ Word 𝐴 ) ) |
| 17 | cofunexg | ⊢ ( ( Fun 𝐹 ∧ 𝑊 ∈ Word 𝐴 ) → ( 𝐹 ∘ 𝑊 ) ∈ V ) | |
| 18 | 16 17 | syl | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝑊 ) ∈ V ) |
| 19 | 18 2 | jca | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ( 𝐹 ∘ 𝑊 ) ∈ V ∧ 𝑁 ∈ ℕ0 ) ) |
| 20 | pfxval | ⊢ ( ( ( 𝐹 ∘ 𝑊 ) ∈ V ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐹 ∘ 𝑊 ) prefix 𝑁 ) = ( ( 𝐹 ∘ 𝑊 ) substr 〈 0 , 𝑁 〉 ) ) | |
| 21 | 19 20 | syl | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ( 𝐹 ∘ 𝑊 ) prefix 𝑁 ) = ( ( 𝐹 ∘ 𝑊 ) substr 〈 0 , 𝑁 〉 ) ) |
| 22 | 8 12 21 | 3eqtr4d | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ ( 𝑊 prefix 𝑁 ) ) = ( ( 𝐹 ∘ 𝑊 ) prefix 𝑁 ) ) |