This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Incomparability under a strict weak partial order is an equivalence relation. (Contributed by Mario Carneiro, 9-Jul-2014) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | swoer.1 | ⊢ 𝑅 = ( ( 𝑋 × 𝑋 ) ∖ ( < ∪ ◡ < ) ) | |
| swoer.2 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 < 𝑧 → ¬ 𝑧 < 𝑦 ) ) | ||
| swoer.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 < 𝑦 → ( 𝑥 < 𝑧 ∨ 𝑧 < 𝑦 ) ) ) | ||
| Assertion | swoer | ⊢ ( 𝜑 → 𝑅 Er 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swoer.1 | ⊢ 𝑅 = ( ( 𝑋 × 𝑋 ) ∖ ( < ∪ ◡ < ) ) | |
| 2 | swoer.2 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 < 𝑧 → ¬ 𝑧 < 𝑦 ) ) | |
| 3 | swoer.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 < 𝑦 → ( 𝑥 < 𝑧 ∨ 𝑧 < 𝑦 ) ) ) | |
| 4 | difss | ⊢ ( ( 𝑋 × 𝑋 ) ∖ ( < ∪ ◡ < ) ) ⊆ ( 𝑋 × 𝑋 ) | |
| 5 | 1 4 | eqsstri | ⊢ 𝑅 ⊆ ( 𝑋 × 𝑋 ) |
| 6 | relxp | ⊢ Rel ( 𝑋 × 𝑋 ) | |
| 7 | relss | ⊢ ( 𝑅 ⊆ ( 𝑋 × 𝑋 ) → ( Rel ( 𝑋 × 𝑋 ) → Rel 𝑅 ) ) | |
| 8 | 5 6 7 | mp2 | ⊢ Rel 𝑅 |
| 9 | 8 | a1i | ⊢ ( 𝜑 → Rel 𝑅 ) |
| 10 | simpr | ⊢ ( ( 𝜑 ∧ 𝑢 𝑅 𝑣 ) → 𝑢 𝑅 𝑣 ) | |
| 11 | orcom | ⊢ ( ( 𝑢 < 𝑣 ∨ 𝑣 < 𝑢 ) ↔ ( 𝑣 < 𝑢 ∨ 𝑢 < 𝑣 ) ) | |
| 12 | 11 | a1i | ⊢ ( ( 𝜑 ∧ 𝑢 𝑅 𝑣 ) → ( ( 𝑢 < 𝑣 ∨ 𝑣 < 𝑢 ) ↔ ( 𝑣 < 𝑢 ∨ 𝑢 < 𝑣 ) ) ) |
| 13 | 12 | notbid | ⊢ ( ( 𝜑 ∧ 𝑢 𝑅 𝑣 ) → ( ¬ ( 𝑢 < 𝑣 ∨ 𝑣 < 𝑢 ) ↔ ¬ ( 𝑣 < 𝑢 ∨ 𝑢 < 𝑣 ) ) ) |
| 14 | 5 | ssbri | ⊢ ( 𝑢 𝑅 𝑣 → 𝑢 ( 𝑋 × 𝑋 ) 𝑣 ) |
| 15 | 14 | adantl | ⊢ ( ( 𝜑 ∧ 𝑢 𝑅 𝑣 ) → 𝑢 ( 𝑋 × 𝑋 ) 𝑣 ) |
| 16 | brxp | ⊢ ( 𝑢 ( 𝑋 × 𝑋 ) 𝑣 ↔ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) | |
| 17 | 15 16 | sylib | ⊢ ( ( 𝜑 ∧ 𝑢 𝑅 𝑣 ) → ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) |
| 18 | 1 | brdifun | ⊢ ( ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) → ( 𝑢 𝑅 𝑣 ↔ ¬ ( 𝑢 < 𝑣 ∨ 𝑣 < 𝑢 ) ) ) |
| 19 | 17 18 | syl | ⊢ ( ( 𝜑 ∧ 𝑢 𝑅 𝑣 ) → ( 𝑢 𝑅 𝑣 ↔ ¬ ( 𝑢 < 𝑣 ∨ 𝑣 < 𝑢 ) ) ) |
| 20 | 17 | simprd | ⊢ ( ( 𝜑 ∧ 𝑢 𝑅 𝑣 ) → 𝑣 ∈ 𝑋 ) |
| 21 | 17 | simpld | ⊢ ( ( 𝜑 ∧ 𝑢 𝑅 𝑣 ) → 𝑢 ∈ 𝑋 ) |
| 22 | 1 | brdifun | ⊢ ( ( 𝑣 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋 ) → ( 𝑣 𝑅 𝑢 ↔ ¬ ( 𝑣 < 𝑢 ∨ 𝑢 < 𝑣 ) ) ) |
| 23 | 20 21 22 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑢 𝑅 𝑣 ) → ( 𝑣 𝑅 𝑢 ↔ ¬ ( 𝑣 < 𝑢 ∨ 𝑢 < 𝑣 ) ) ) |
| 24 | 13 19 23 | 3bitr4d | ⊢ ( ( 𝜑 ∧ 𝑢 𝑅 𝑣 ) → ( 𝑢 𝑅 𝑣 ↔ 𝑣 𝑅 𝑢 ) ) |
| 25 | 10 24 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑢 𝑅 𝑣 ) → 𝑣 𝑅 𝑢 ) |
| 26 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑢 𝑅 𝑣 ∧ 𝑣 𝑅 𝑤 ) ) → 𝑢 𝑅 𝑣 ) | |
| 27 | 14 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑢 𝑅 𝑣 ∧ 𝑣 𝑅 𝑤 ) ) → 𝑢 ( 𝑋 × 𝑋 ) 𝑣 ) |
| 28 | 16 | simplbi | ⊢ ( 𝑢 ( 𝑋 × 𝑋 ) 𝑣 → 𝑢 ∈ 𝑋 ) |
| 29 | 27 28 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑢 𝑅 𝑣 ∧ 𝑣 𝑅 𝑤 ) ) → 𝑢 ∈ 𝑋 ) |
| 30 | 16 | simprbi | ⊢ ( 𝑢 ( 𝑋 × 𝑋 ) 𝑣 → 𝑣 ∈ 𝑋 ) |
| 31 | 27 30 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑢 𝑅 𝑣 ∧ 𝑣 𝑅 𝑤 ) ) → 𝑣 ∈ 𝑋 ) |
| 32 | 29 31 18 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑢 𝑅 𝑣 ∧ 𝑣 𝑅 𝑤 ) ) → ( 𝑢 𝑅 𝑣 ↔ ¬ ( 𝑢 < 𝑣 ∨ 𝑣 < 𝑢 ) ) ) |
| 33 | 26 32 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑢 𝑅 𝑣 ∧ 𝑣 𝑅 𝑤 ) ) → ¬ ( 𝑢 < 𝑣 ∨ 𝑣 < 𝑢 ) ) |
| 34 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑢 𝑅 𝑣 ∧ 𝑣 𝑅 𝑤 ) ) → 𝑣 𝑅 𝑤 ) | |
| 35 | 5 | brel | ⊢ ( 𝑣 𝑅 𝑤 → ( 𝑣 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) |
| 36 | 35 | simprd | ⊢ ( 𝑣 𝑅 𝑤 → 𝑤 ∈ 𝑋 ) |
| 37 | 34 36 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑢 𝑅 𝑣 ∧ 𝑣 𝑅 𝑤 ) ) → 𝑤 ∈ 𝑋 ) |
| 38 | 1 | brdifun | ⊢ ( ( 𝑣 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( 𝑣 𝑅 𝑤 ↔ ¬ ( 𝑣 < 𝑤 ∨ 𝑤 < 𝑣 ) ) ) |
| 39 | 31 37 38 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑢 𝑅 𝑣 ∧ 𝑣 𝑅 𝑤 ) ) → ( 𝑣 𝑅 𝑤 ↔ ¬ ( 𝑣 < 𝑤 ∨ 𝑤 < 𝑣 ) ) ) |
| 40 | 34 39 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑢 𝑅 𝑣 ∧ 𝑣 𝑅 𝑤 ) ) → ¬ ( 𝑣 < 𝑤 ∨ 𝑤 < 𝑣 ) ) |
| 41 | simpl | ⊢ ( ( 𝜑 ∧ ( 𝑢 𝑅 𝑣 ∧ 𝑣 𝑅 𝑤 ) ) → 𝜑 ) | |
| 42 | 3 | swopolem | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( 𝑢 < 𝑤 → ( 𝑢 < 𝑣 ∨ 𝑣 < 𝑤 ) ) ) |
| 43 | 41 29 37 31 42 | syl13anc | ⊢ ( ( 𝜑 ∧ ( 𝑢 𝑅 𝑣 ∧ 𝑣 𝑅 𝑤 ) ) → ( 𝑢 < 𝑤 → ( 𝑢 < 𝑣 ∨ 𝑣 < 𝑤 ) ) ) |
| 44 | 3 | swopolem | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( 𝑤 < 𝑢 → ( 𝑤 < 𝑣 ∨ 𝑣 < 𝑢 ) ) ) |
| 45 | 41 37 29 31 44 | syl13anc | ⊢ ( ( 𝜑 ∧ ( 𝑢 𝑅 𝑣 ∧ 𝑣 𝑅 𝑤 ) ) → ( 𝑤 < 𝑢 → ( 𝑤 < 𝑣 ∨ 𝑣 < 𝑢 ) ) ) |
| 46 | orcom | ⊢ ( ( 𝑣 < 𝑢 ∨ 𝑤 < 𝑣 ) ↔ ( 𝑤 < 𝑣 ∨ 𝑣 < 𝑢 ) ) | |
| 47 | 45 46 | imbitrrdi | ⊢ ( ( 𝜑 ∧ ( 𝑢 𝑅 𝑣 ∧ 𝑣 𝑅 𝑤 ) ) → ( 𝑤 < 𝑢 → ( 𝑣 < 𝑢 ∨ 𝑤 < 𝑣 ) ) ) |
| 48 | 43 47 | orim12d | ⊢ ( ( 𝜑 ∧ ( 𝑢 𝑅 𝑣 ∧ 𝑣 𝑅 𝑤 ) ) → ( ( 𝑢 < 𝑤 ∨ 𝑤 < 𝑢 ) → ( ( 𝑢 < 𝑣 ∨ 𝑣 < 𝑤 ) ∨ ( 𝑣 < 𝑢 ∨ 𝑤 < 𝑣 ) ) ) ) |
| 49 | or4 | ⊢ ( ( ( 𝑢 < 𝑣 ∨ 𝑣 < 𝑤 ) ∨ ( 𝑣 < 𝑢 ∨ 𝑤 < 𝑣 ) ) ↔ ( ( 𝑢 < 𝑣 ∨ 𝑣 < 𝑢 ) ∨ ( 𝑣 < 𝑤 ∨ 𝑤 < 𝑣 ) ) ) | |
| 50 | 48 49 | imbitrdi | ⊢ ( ( 𝜑 ∧ ( 𝑢 𝑅 𝑣 ∧ 𝑣 𝑅 𝑤 ) ) → ( ( 𝑢 < 𝑤 ∨ 𝑤 < 𝑢 ) → ( ( 𝑢 < 𝑣 ∨ 𝑣 < 𝑢 ) ∨ ( 𝑣 < 𝑤 ∨ 𝑤 < 𝑣 ) ) ) ) |
| 51 | 33 40 50 | mtord | ⊢ ( ( 𝜑 ∧ ( 𝑢 𝑅 𝑣 ∧ 𝑣 𝑅 𝑤 ) ) → ¬ ( 𝑢 < 𝑤 ∨ 𝑤 < 𝑢 ) ) |
| 52 | 1 | brdifun | ⊢ ( ( 𝑢 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( 𝑢 𝑅 𝑤 ↔ ¬ ( 𝑢 < 𝑤 ∨ 𝑤 < 𝑢 ) ) ) |
| 53 | 29 37 52 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑢 𝑅 𝑣 ∧ 𝑣 𝑅 𝑤 ) ) → ( 𝑢 𝑅 𝑤 ↔ ¬ ( 𝑢 < 𝑤 ∨ 𝑤 < 𝑢 ) ) ) |
| 54 | 51 53 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑢 𝑅 𝑣 ∧ 𝑣 𝑅 𝑤 ) ) → 𝑢 𝑅 𝑤 ) |
| 55 | 2 3 | swopo | ⊢ ( 𝜑 → < Po 𝑋 ) |
| 56 | poirr | ⊢ ( ( < Po 𝑋 ∧ 𝑢 ∈ 𝑋 ) → ¬ 𝑢 < 𝑢 ) | |
| 57 | 55 56 | sylan | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑋 ) → ¬ 𝑢 < 𝑢 ) |
| 58 | pm1.2 | ⊢ ( ( 𝑢 < 𝑢 ∨ 𝑢 < 𝑢 ) → 𝑢 < 𝑢 ) | |
| 59 | 57 58 | nsyl | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑋 ) → ¬ ( 𝑢 < 𝑢 ∨ 𝑢 < 𝑢 ) ) |
| 60 | simpr | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑋 ) → 𝑢 ∈ 𝑋 ) | |
| 61 | 1 | brdifun | ⊢ ( ( 𝑢 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋 ) → ( 𝑢 𝑅 𝑢 ↔ ¬ ( 𝑢 < 𝑢 ∨ 𝑢 < 𝑢 ) ) ) |
| 62 | 60 60 61 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑋 ) → ( 𝑢 𝑅 𝑢 ↔ ¬ ( 𝑢 < 𝑢 ∨ 𝑢 < 𝑢 ) ) ) |
| 63 | 59 62 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑋 ) → 𝑢 𝑅 𝑢 ) |
| 64 | 5 | ssbri | ⊢ ( 𝑢 𝑅 𝑢 → 𝑢 ( 𝑋 × 𝑋 ) 𝑢 ) |
| 65 | brxp | ⊢ ( 𝑢 ( 𝑋 × 𝑋 ) 𝑢 ↔ ( 𝑢 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋 ) ) | |
| 66 | 65 | simplbi | ⊢ ( 𝑢 ( 𝑋 × 𝑋 ) 𝑢 → 𝑢 ∈ 𝑋 ) |
| 67 | 64 66 | syl | ⊢ ( 𝑢 𝑅 𝑢 → 𝑢 ∈ 𝑋 ) |
| 68 | 67 | adantl | ⊢ ( ( 𝜑 ∧ 𝑢 𝑅 𝑢 ) → 𝑢 ∈ 𝑋 ) |
| 69 | 63 68 | impbida | ⊢ ( 𝜑 → ( 𝑢 ∈ 𝑋 ↔ 𝑢 𝑅 𝑢 ) ) |
| 70 | 9 25 54 69 | iserd | ⊢ ( 𝜑 → 𝑅 Er 𝑋 ) |