This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Incomparability under a strict weak partial order is an equivalence relation. (Contributed by Mario Carneiro, 9-Jul-2014) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | swoer.1 | |- R = ( ( X X. X ) \ ( .< u. `' .< ) ) |
|
| swoer.2 | |- ( ( ph /\ ( y e. X /\ z e. X ) ) -> ( y .< z -> -. z .< y ) ) |
||
| swoer.3 | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x .< y -> ( x .< z \/ z .< y ) ) ) |
||
| Assertion | swoer | |- ( ph -> R Er X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swoer.1 | |- R = ( ( X X. X ) \ ( .< u. `' .< ) ) |
|
| 2 | swoer.2 | |- ( ( ph /\ ( y e. X /\ z e. X ) ) -> ( y .< z -> -. z .< y ) ) |
|
| 3 | swoer.3 | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x .< y -> ( x .< z \/ z .< y ) ) ) |
|
| 4 | difss | |- ( ( X X. X ) \ ( .< u. `' .< ) ) C_ ( X X. X ) |
|
| 5 | 1 4 | eqsstri | |- R C_ ( X X. X ) |
| 6 | relxp | |- Rel ( X X. X ) |
|
| 7 | relss | |- ( R C_ ( X X. X ) -> ( Rel ( X X. X ) -> Rel R ) ) |
|
| 8 | 5 6 7 | mp2 | |- Rel R |
| 9 | 8 | a1i | |- ( ph -> Rel R ) |
| 10 | simpr | |- ( ( ph /\ u R v ) -> u R v ) |
|
| 11 | orcom | |- ( ( u .< v \/ v .< u ) <-> ( v .< u \/ u .< v ) ) |
|
| 12 | 11 | a1i | |- ( ( ph /\ u R v ) -> ( ( u .< v \/ v .< u ) <-> ( v .< u \/ u .< v ) ) ) |
| 13 | 12 | notbid | |- ( ( ph /\ u R v ) -> ( -. ( u .< v \/ v .< u ) <-> -. ( v .< u \/ u .< v ) ) ) |
| 14 | 5 | ssbri | |- ( u R v -> u ( X X. X ) v ) |
| 15 | 14 | adantl | |- ( ( ph /\ u R v ) -> u ( X X. X ) v ) |
| 16 | brxp | |- ( u ( X X. X ) v <-> ( u e. X /\ v e. X ) ) |
|
| 17 | 15 16 | sylib | |- ( ( ph /\ u R v ) -> ( u e. X /\ v e. X ) ) |
| 18 | 1 | brdifun | |- ( ( u e. X /\ v e. X ) -> ( u R v <-> -. ( u .< v \/ v .< u ) ) ) |
| 19 | 17 18 | syl | |- ( ( ph /\ u R v ) -> ( u R v <-> -. ( u .< v \/ v .< u ) ) ) |
| 20 | 17 | simprd | |- ( ( ph /\ u R v ) -> v e. X ) |
| 21 | 17 | simpld | |- ( ( ph /\ u R v ) -> u e. X ) |
| 22 | 1 | brdifun | |- ( ( v e. X /\ u e. X ) -> ( v R u <-> -. ( v .< u \/ u .< v ) ) ) |
| 23 | 20 21 22 | syl2anc | |- ( ( ph /\ u R v ) -> ( v R u <-> -. ( v .< u \/ u .< v ) ) ) |
| 24 | 13 19 23 | 3bitr4d | |- ( ( ph /\ u R v ) -> ( u R v <-> v R u ) ) |
| 25 | 10 24 | mpbid | |- ( ( ph /\ u R v ) -> v R u ) |
| 26 | simprl | |- ( ( ph /\ ( u R v /\ v R w ) ) -> u R v ) |
|
| 27 | 14 | ad2antrl | |- ( ( ph /\ ( u R v /\ v R w ) ) -> u ( X X. X ) v ) |
| 28 | 16 | simplbi | |- ( u ( X X. X ) v -> u e. X ) |
| 29 | 27 28 | syl | |- ( ( ph /\ ( u R v /\ v R w ) ) -> u e. X ) |
| 30 | 16 | simprbi | |- ( u ( X X. X ) v -> v e. X ) |
| 31 | 27 30 | syl | |- ( ( ph /\ ( u R v /\ v R w ) ) -> v e. X ) |
| 32 | 29 31 18 | syl2anc | |- ( ( ph /\ ( u R v /\ v R w ) ) -> ( u R v <-> -. ( u .< v \/ v .< u ) ) ) |
| 33 | 26 32 | mpbid | |- ( ( ph /\ ( u R v /\ v R w ) ) -> -. ( u .< v \/ v .< u ) ) |
| 34 | simprr | |- ( ( ph /\ ( u R v /\ v R w ) ) -> v R w ) |
|
| 35 | 5 | brel | |- ( v R w -> ( v e. X /\ w e. X ) ) |
| 36 | 35 | simprd | |- ( v R w -> w e. X ) |
| 37 | 34 36 | syl | |- ( ( ph /\ ( u R v /\ v R w ) ) -> w e. X ) |
| 38 | 1 | brdifun | |- ( ( v e. X /\ w e. X ) -> ( v R w <-> -. ( v .< w \/ w .< v ) ) ) |
| 39 | 31 37 38 | syl2anc | |- ( ( ph /\ ( u R v /\ v R w ) ) -> ( v R w <-> -. ( v .< w \/ w .< v ) ) ) |
| 40 | 34 39 | mpbid | |- ( ( ph /\ ( u R v /\ v R w ) ) -> -. ( v .< w \/ w .< v ) ) |
| 41 | simpl | |- ( ( ph /\ ( u R v /\ v R w ) ) -> ph ) |
|
| 42 | 3 | swopolem | |- ( ( ph /\ ( u e. X /\ w e. X /\ v e. X ) ) -> ( u .< w -> ( u .< v \/ v .< w ) ) ) |
| 43 | 41 29 37 31 42 | syl13anc | |- ( ( ph /\ ( u R v /\ v R w ) ) -> ( u .< w -> ( u .< v \/ v .< w ) ) ) |
| 44 | 3 | swopolem | |- ( ( ph /\ ( w e. X /\ u e. X /\ v e. X ) ) -> ( w .< u -> ( w .< v \/ v .< u ) ) ) |
| 45 | 41 37 29 31 44 | syl13anc | |- ( ( ph /\ ( u R v /\ v R w ) ) -> ( w .< u -> ( w .< v \/ v .< u ) ) ) |
| 46 | orcom | |- ( ( v .< u \/ w .< v ) <-> ( w .< v \/ v .< u ) ) |
|
| 47 | 45 46 | imbitrrdi | |- ( ( ph /\ ( u R v /\ v R w ) ) -> ( w .< u -> ( v .< u \/ w .< v ) ) ) |
| 48 | 43 47 | orim12d | |- ( ( ph /\ ( u R v /\ v R w ) ) -> ( ( u .< w \/ w .< u ) -> ( ( u .< v \/ v .< w ) \/ ( v .< u \/ w .< v ) ) ) ) |
| 49 | or4 | |- ( ( ( u .< v \/ v .< w ) \/ ( v .< u \/ w .< v ) ) <-> ( ( u .< v \/ v .< u ) \/ ( v .< w \/ w .< v ) ) ) |
|
| 50 | 48 49 | imbitrdi | |- ( ( ph /\ ( u R v /\ v R w ) ) -> ( ( u .< w \/ w .< u ) -> ( ( u .< v \/ v .< u ) \/ ( v .< w \/ w .< v ) ) ) ) |
| 51 | 33 40 50 | mtord | |- ( ( ph /\ ( u R v /\ v R w ) ) -> -. ( u .< w \/ w .< u ) ) |
| 52 | 1 | brdifun | |- ( ( u e. X /\ w e. X ) -> ( u R w <-> -. ( u .< w \/ w .< u ) ) ) |
| 53 | 29 37 52 | syl2anc | |- ( ( ph /\ ( u R v /\ v R w ) ) -> ( u R w <-> -. ( u .< w \/ w .< u ) ) ) |
| 54 | 51 53 | mpbird | |- ( ( ph /\ ( u R v /\ v R w ) ) -> u R w ) |
| 55 | 2 3 | swopo | |- ( ph -> .< Po X ) |
| 56 | poirr | |- ( ( .< Po X /\ u e. X ) -> -. u .< u ) |
|
| 57 | 55 56 | sylan | |- ( ( ph /\ u e. X ) -> -. u .< u ) |
| 58 | pm1.2 | |- ( ( u .< u \/ u .< u ) -> u .< u ) |
|
| 59 | 57 58 | nsyl | |- ( ( ph /\ u e. X ) -> -. ( u .< u \/ u .< u ) ) |
| 60 | simpr | |- ( ( ph /\ u e. X ) -> u e. X ) |
|
| 61 | 1 | brdifun | |- ( ( u e. X /\ u e. X ) -> ( u R u <-> -. ( u .< u \/ u .< u ) ) ) |
| 62 | 60 60 61 | syl2anc | |- ( ( ph /\ u e. X ) -> ( u R u <-> -. ( u .< u \/ u .< u ) ) ) |
| 63 | 59 62 | mpbird | |- ( ( ph /\ u e. X ) -> u R u ) |
| 64 | 5 | ssbri | |- ( u R u -> u ( X X. X ) u ) |
| 65 | brxp | |- ( u ( X X. X ) u <-> ( u e. X /\ u e. X ) ) |
|
| 66 | 65 | simplbi | |- ( u ( X X. X ) u -> u e. X ) |
| 67 | 64 66 | syl | |- ( u R u -> u e. X ) |
| 68 | 67 | adantl | |- ( ( ph /\ u R u ) -> u e. X ) |
| 69 | 63 68 | impbida | |- ( ph -> ( u e. X <-> u R u ) ) |
| 70 | 9 25 54 69 | iserd | |- ( ph -> R Er X ) |