This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Perform the substitutions into the strict weak ordering law. (Contributed by Mario Carneiro, 31-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | swopolem.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑥 𝑅 𝑦 → ( 𝑥 𝑅 𝑧 ∨ 𝑧 𝑅 𝑦 ) ) ) | |
| Assertion | swopolem | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴 ) ) → ( 𝑋 𝑅 𝑌 → ( 𝑋 𝑅 𝑍 ∨ 𝑍 𝑅 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swopolem.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑥 𝑅 𝑦 → ( 𝑥 𝑅 𝑧 ∨ 𝑧 𝑅 𝑦 ) ) ) | |
| 2 | 1 | ralrimivvva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝑥 𝑅 𝑧 ∨ 𝑧 𝑅 𝑦 ) ) ) |
| 3 | breq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 𝑅 𝑦 ↔ 𝑋 𝑅 𝑦 ) ) | |
| 4 | breq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 𝑅 𝑧 ↔ 𝑋 𝑅 𝑧 ) ) | |
| 5 | 4 | orbi1d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 𝑅 𝑧 ∨ 𝑧 𝑅 𝑦 ) ↔ ( 𝑋 𝑅 𝑧 ∨ 𝑧 𝑅 𝑦 ) ) ) |
| 6 | 3 5 | imbi12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 𝑅 𝑦 → ( 𝑥 𝑅 𝑧 ∨ 𝑧 𝑅 𝑦 ) ) ↔ ( 𝑋 𝑅 𝑦 → ( 𝑋 𝑅 𝑧 ∨ 𝑧 𝑅 𝑦 ) ) ) ) |
| 7 | breq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 𝑅 𝑦 ↔ 𝑋 𝑅 𝑌 ) ) | |
| 8 | breq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑧 𝑅 𝑦 ↔ 𝑧 𝑅 𝑌 ) ) | |
| 9 | 8 | orbi2d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 𝑅 𝑧 ∨ 𝑧 𝑅 𝑦 ) ↔ ( 𝑋 𝑅 𝑧 ∨ 𝑧 𝑅 𝑌 ) ) ) |
| 10 | 7 9 | imbi12d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 𝑅 𝑦 → ( 𝑋 𝑅 𝑧 ∨ 𝑧 𝑅 𝑦 ) ) ↔ ( 𝑋 𝑅 𝑌 → ( 𝑋 𝑅 𝑧 ∨ 𝑧 𝑅 𝑌 ) ) ) ) |
| 11 | breq2 | ⊢ ( 𝑧 = 𝑍 → ( 𝑋 𝑅 𝑧 ↔ 𝑋 𝑅 𝑍 ) ) | |
| 12 | breq1 | ⊢ ( 𝑧 = 𝑍 → ( 𝑧 𝑅 𝑌 ↔ 𝑍 𝑅 𝑌 ) ) | |
| 13 | 11 12 | orbi12d | ⊢ ( 𝑧 = 𝑍 → ( ( 𝑋 𝑅 𝑧 ∨ 𝑧 𝑅 𝑌 ) ↔ ( 𝑋 𝑅 𝑍 ∨ 𝑍 𝑅 𝑌 ) ) ) |
| 14 | 13 | imbi2d | ⊢ ( 𝑧 = 𝑍 → ( ( 𝑋 𝑅 𝑌 → ( 𝑋 𝑅 𝑧 ∨ 𝑧 𝑅 𝑌 ) ) ↔ ( 𝑋 𝑅 𝑌 → ( 𝑋 𝑅 𝑍 ∨ 𝑍 𝑅 𝑌 ) ) ) ) |
| 15 | 6 10 14 | rspc3v | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝑥 𝑅 𝑧 ∨ 𝑧 𝑅 𝑦 ) ) → ( 𝑋 𝑅 𝑌 → ( 𝑋 𝑅 𝑍 ∨ 𝑍 𝑅 𝑌 ) ) ) ) |
| 16 | 2 15 | mpan9 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴 ) ) → ( 𝑋 𝑅 𝑌 → ( 𝑋 𝑅 𝑍 ∨ 𝑍 𝑅 𝑌 ) ) ) |