This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A supremum is the least upper bound. See also supcl and supub . (Contributed by NM, 13-Oct-2004) (Revised by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supmo.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| supcl.2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) | ||
| Assertion | suplub | ⊢ ( 𝜑 → ( ( 𝐶 ∈ 𝐴 ∧ 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) → ∃ 𝑧 ∈ 𝐵 𝐶 𝑅 𝑧 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supmo.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| 2 | supcl.2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) | |
| 3 | simpr | ⊢ ( ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) → ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) | |
| 4 | breq1 | ⊢ ( 𝑦 = 𝑤 → ( 𝑦 𝑅 𝑥 ↔ 𝑤 𝑅 𝑥 ) ) | |
| 5 | breq1 | ⊢ ( 𝑦 = 𝑤 → ( 𝑦 𝑅 𝑧 ↔ 𝑤 𝑅 𝑧 ) ) | |
| 6 | 5 | rexbidv | ⊢ ( 𝑦 = 𝑤 → ( ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ↔ ∃ 𝑧 ∈ 𝐵 𝑤 𝑅 𝑧 ) ) |
| 7 | 4 6 | imbi12d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ↔ ( 𝑤 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑤 𝑅 𝑧 ) ) ) |
| 8 | 7 | cbvralvw | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ↔ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑤 𝑅 𝑧 ) ) |
| 9 | 3 8 | sylib | ⊢ ( ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) → ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑤 𝑅 𝑧 ) ) |
| 10 | 9 | a1i | ⊢ ( 𝑥 ∈ 𝐴 → ( ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) → ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑤 𝑅 𝑧 ) ) ) |
| 11 | 10 | ss2rabi | ⊢ { 𝑥 ∈ 𝐴 ∣ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) } ⊆ { 𝑥 ∈ 𝐴 ∣ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑤 𝑅 𝑧 ) } |
| 12 | 1 | supval2 | ⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , 𝑅 ) = ( ℩ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) ) |
| 13 | 1 2 | supeu | ⊢ ( 𝜑 → ∃! 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) |
| 14 | riotacl2 | ⊢ ( ∃! 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) → ( ℩ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) ∈ { 𝑥 ∈ 𝐴 ∣ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) } ) | |
| 15 | 13 14 | syl | ⊢ ( 𝜑 → ( ℩ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) ∈ { 𝑥 ∈ 𝐴 ∣ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) } ) |
| 16 | 12 15 | eqeltrd | ⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ { 𝑥 ∈ 𝐴 ∣ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) } ) |
| 17 | 11 16 | sselid | ⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ { 𝑥 ∈ 𝐴 ∣ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑤 𝑅 𝑧 ) } ) |
| 18 | breq2 | ⊢ ( 𝑥 = sup ( 𝐵 , 𝐴 , 𝑅 ) → ( 𝑤 𝑅 𝑥 ↔ 𝑤 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) ) | |
| 19 | 18 | imbi1d | ⊢ ( 𝑥 = sup ( 𝐵 , 𝐴 , 𝑅 ) → ( ( 𝑤 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑤 𝑅 𝑧 ) ↔ ( 𝑤 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) → ∃ 𝑧 ∈ 𝐵 𝑤 𝑅 𝑧 ) ) ) |
| 20 | 19 | ralbidv | ⊢ ( 𝑥 = sup ( 𝐵 , 𝐴 , 𝑅 ) → ( ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑤 𝑅 𝑧 ) ↔ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) → ∃ 𝑧 ∈ 𝐵 𝑤 𝑅 𝑧 ) ) ) |
| 21 | 20 | elrab | ⊢ ( sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ { 𝑥 ∈ 𝐴 ∣ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑤 𝑅 𝑧 ) } ↔ ( sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐴 ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) → ∃ 𝑧 ∈ 𝐵 𝑤 𝑅 𝑧 ) ) ) |
| 22 | 21 | simprbi | ⊢ ( sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ { 𝑥 ∈ 𝐴 ∣ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑤 𝑅 𝑧 ) } → ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) → ∃ 𝑧 ∈ 𝐵 𝑤 𝑅 𝑧 ) ) |
| 23 | 17 22 | syl | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) → ∃ 𝑧 ∈ 𝐵 𝑤 𝑅 𝑧 ) ) |
| 24 | breq1 | ⊢ ( 𝑤 = 𝐶 → ( 𝑤 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ↔ 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) ) | |
| 25 | breq1 | ⊢ ( 𝑤 = 𝐶 → ( 𝑤 𝑅 𝑧 ↔ 𝐶 𝑅 𝑧 ) ) | |
| 26 | 25 | rexbidv | ⊢ ( 𝑤 = 𝐶 → ( ∃ 𝑧 ∈ 𝐵 𝑤 𝑅 𝑧 ↔ ∃ 𝑧 ∈ 𝐵 𝐶 𝑅 𝑧 ) ) |
| 27 | 24 26 | imbi12d | ⊢ ( 𝑤 = 𝐶 → ( ( 𝑤 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) → ∃ 𝑧 ∈ 𝐵 𝑤 𝑅 𝑧 ) ↔ ( 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) → ∃ 𝑧 ∈ 𝐵 𝐶 𝑅 𝑧 ) ) ) |
| 28 | 27 | rspccv | ⊢ ( ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) → ∃ 𝑧 ∈ 𝐵 𝑤 𝑅 𝑧 ) → ( 𝐶 ∈ 𝐴 → ( 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) → ∃ 𝑧 ∈ 𝐵 𝐶 𝑅 𝑧 ) ) ) |
| 29 | 28 | impd | ⊢ ( ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) → ∃ 𝑧 ∈ 𝐵 𝑤 𝑅 𝑧 ) → ( ( 𝐶 ∈ 𝐴 ∧ 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) → ∃ 𝑧 ∈ 𝐵 𝐶 𝑅 𝑧 ) ) |
| 30 | 23 29 | syl | ⊢ ( 𝜑 → ( ( 𝐶 ∈ 𝐴 ∧ 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) → ∃ 𝑧 ∈ 𝐵 𝐶 𝑅 𝑧 ) ) |