This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a bounded-above set of reals is the negation of the infimum of that set's image under negation. (Contributed by Paul Chapman, 21-Mar-2011) ( Revised by AV, 13-Sep-2020.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supminf | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ , < ) = - inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 | ⊢ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ⊆ ℝ | |
| 2 | negn0 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ≠ ∅ ) | |
| 3 | ublbneg | ⊢ ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } 𝑥 ≤ 𝑦 ) | |
| 4 | infrenegsup | ⊢ ( ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ⊆ ℝ ∧ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } 𝑥 ≤ 𝑦 ) → inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) = - sup ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } } , ℝ , < ) ) | |
| 5 | 1 2 3 4 | mp3an3an | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) = - sup ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } } , ℝ , < ) ) |
| 6 | 5 | 3impa | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) = - sup ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } } , ℝ , < ) ) |
| 7 | elrabi | ⊢ ( 𝑥 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } } → 𝑥 ∈ ℝ ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } } ) → 𝑥 ∈ ℝ ) |
| 9 | ssel2 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) | |
| 10 | negeq | ⊢ ( 𝑤 = 𝑥 → - 𝑤 = - 𝑥 ) | |
| 11 | 10 | eleq1d | ⊢ ( 𝑤 = 𝑥 → ( - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ↔ - 𝑥 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ) ) |
| 12 | 11 | elrab3 | ⊢ ( 𝑥 ∈ ℝ → ( 𝑥 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } } ↔ - 𝑥 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ) ) |
| 13 | renegcl | ⊢ ( 𝑥 ∈ ℝ → - 𝑥 ∈ ℝ ) | |
| 14 | negeq | ⊢ ( 𝑧 = - 𝑥 → - 𝑧 = - - 𝑥 ) | |
| 15 | 14 | eleq1d | ⊢ ( 𝑧 = - 𝑥 → ( - 𝑧 ∈ 𝐴 ↔ - - 𝑥 ∈ 𝐴 ) ) |
| 16 | 15 | elrab3 | ⊢ ( - 𝑥 ∈ ℝ → ( - 𝑥 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ↔ - - 𝑥 ∈ 𝐴 ) ) |
| 17 | 13 16 | syl | ⊢ ( 𝑥 ∈ ℝ → ( - 𝑥 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ↔ - - 𝑥 ∈ 𝐴 ) ) |
| 18 | recn | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) | |
| 19 | 18 | negnegd | ⊢ ( 𝑥 ∈ ℝ → - - 𝑥 = 𝑥 ) |
| 20 | 19 | eleq1d | ⊢ ( 𝑥 ∈ ℝ → ( - - 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) |
| 21 | 12 17 20 | 3bitrd | ⊢ ( 𝑥 ∈ ℝ → ( 𝑥 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } } ↔ 𝑥 ∈ 𝐴 ) ) |
| 22 | 21 | adantl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } } ↔ 𝑥 ∈ 𝐴 ) ) |
| 23 | 8 9 22 | eqrdav | ⊢ ( 𝐴 ⊆ ℝ → { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } } = 𝐴 ) |
| 24 | 23 | supeq1d | ⊢ ( 𝐴 ⊆ ℝ → sup ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } } , ℝ , < ) = sup ( 𝐴 , ℝ , < ) ) |
| 25 | 24 | 3ad2ant1 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } } , ℝ , < ) = sup ( 𝐴 , ℝ , < ) ) |
| 26 | 25 | negeqd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → - sup ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } } , ℝ , < ) = - sup ( 𝐴 , ℝ , < ) ) |
| 27 | 6 26 | eqtrd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) = - sup ( 𝐴 , ℝ , < ) ) |
| 28 | infrecl | ⊢ ( ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ⊆ ℝ ∧ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } 𝑥 ≤ 𝑦 ) → inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) ∈ ℝ ) | |
| 29 | 1 2 3 28 | mp3an3an | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) ∈ ℝ ) |
| 30 | 29 | 3impa | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) ∈ ℝ ) |
| 31 | suprcl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) | |
| 32 | recn | ⊢ ( inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) ∈ ℝ → inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) ∈ ℂ ) | |
| 33 | recn | ⊢ ( sup ( 𝐴 , ℝ , < ) ∈ ℝ → sup ( 𝐴 , ℝ , < ) ∈ ℂ ) | |
| 34 | negcon2 | ⊢ ( ( inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) ∈ ℂ ∧ sup ( 𝐴 , ℝ , < ) ∈ ℂ ) → ( inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) = - sup ( 𝐴 , ℝ , < ) ↔ sup ( 𝐴 , ℝ , < ) = - inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) ) ) | |
| 35 | 32 33 34 | syl2an | ⊢ ( ( inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) ∈ ℝ ∧ sup ( 𝐴 , ℝ , < ) ∈ ℝ ) → ( inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) = - sup ( 𝐴 , ℝ , < ) ↔ sup ( 𝐴 , ℝ , < ) = - inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) ) ) |
| 36 | 30 31 35 | syl2anc | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ( inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) = - sup ( 𝐴 , ℝ , < ) ↔ sup ( 𝐴 , ℝ , < ) = - inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) ) ) |
| 37 | 27 36 | mpbid | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ , < ) = - inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) ) |