This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image under negation of a bounded-above set of reals is bounded below. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ublbneg | ⊢ ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } 𝑥 ≤ 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | ⊢ ( 𝑏 = 𝑦 → ( 𝑏 ≤ 𝑎 ↔ 𝑦 ≤ 𝑎 ) ) | |
| 2 | 1 | cbvralvw | ⊢ ( ∀ 𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 ↔ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑎 ) |
| 3 | 2 | rexbii | ⊢ ( ∃ 𝑎 ∈ ℝ ∀ 𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 ↔ ∃ 𝑎 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑎 ) |
| 4 | breq2 | ⊢ ( 𝑎 = 𝑥 → ( 𝑦 ≤ 𝑎 ↔ 𝑦 ≤ 𝑥 ) ) | |
| 5 | 4 | ralbidv | ⊢ ( 𝑎 = 𝑥 → ( ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑎 ↔ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 6 | 5 | cbvrexvw | ⊢ ( ∃ 𝑎 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑎 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |
| 7 | 3 6 | bitri | ⊢ ( ∃ 𝑎 ∈ ℝ ∀ 𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |
| 8 | renegcl | ⊢ ( 𝑎 ∈ ℝ → - 𝑎 ∈ ℝ ) | |
| 9 | elrabi | ⊢ ( 𝑦 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } → 𝑦 ∈ ℝ ) | |
| 10 | negeq | ⊢ ( 𝑧 = 𝑦 → - 𝑧 = - 𝑦 ) | |
| 11 | 10 | eleq1d | ⊢ ( 𝑧 = 𝑦 → ( - 𝑧 ∈ 𝐴 ↔ - 𝑦 ∈ 𝐴 ) ) |
| 12 | 11 | elrab3 | ⊢ ( 𝑦 ∈ ℝ → ( 𝑦 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ↔ - 𝑦 ∈ 𝐴 ) ) |
| 13 | 12 | biimpd | ⊢ ( 𝑦 ∈ ℝ → ( 𝑦 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } → - 𝑦 ∈ 𝐴 ) ) |
| 14 | 9 13 | mpcom | ⊢ ( 𝑦 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } → - 𝑦 ∈ 𝐴 ) |
| 15 | breq1 | ⊢ ( 𝑏 = - 𝑦 → ( 𝑏 ≤ 𝑎 ↔ - 𝑦 ≤ 𝑎 ) ) | |
| 16 | 15 | rspcv | ⊢ ( - 𝑦 ∈ 𝐴 → ( ∀ 𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → - 𝑦 ≤ 𝑎 ) ) |
| 17 | 14 16 | syl | ⊢ ( 𝑦 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } → ( ∀ 𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → - 𝑦 ≤ 𝑎 ) ) |
| 18 | 17 | adantl | ⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑦 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ) → ( ∀ 𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → - 𝑦 ≤ 𝑎 ) ) |
| 19 | lenegcon1 | ⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( - 𝑎 ≤ 𝑦 ↔ - 𝑦 ≤ 𝑎 ) ) | |
| 20 | 9 19 | sylan2 | ⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑦 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ) → ( - 𝑎 ≤ 𝑦 ↔ - 𝑦 ≤ 𝑎 ) ) |
| 21 | 18 20 | sylibrd | ⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑦 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ) → ( ∀ 𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → - 𝑎 ≤ 𝑦 ) ) |
| 22 | 21 | ralrimdva | ⊢ ( 𝑎 ∈ ℝ → ( ∀ 𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → ∀ 𝑦 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } - 𝑎 ≤ 𝑦 ) ) |
| 23 | breq1 | ⊢ ( 𝑥 = - 𝑎 → ( 𝑥 ≤ 𝑦 ↔ - 𝑎 ≤ 𝑦 ) ) | |
| 24 | 23 | ralbidv | ⊢ ( 𝑥 = - 𝑎 → ( ∀ 𝑦 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } 𝑥 ≤ 𝑦 ↔ ∀ 𝑦 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } - 𝑎 ≤ 𝑦 ) ) |
| 25 | 24 | rspcev | ⊢ ( ( - 𝑎 ∈ ℝ ∧ ∀ 𝑦 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } - 𝑎 ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } 𝑥 ≤ 𝑦 ) |
| 26 | 8 22 25 | syl6an | ⊢ ( 𝑎 ∈ ℝ → ( ∀ 𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } 𝑥 ≤ 𝑦 ) ) |
| 27 | 26 | rexlimiv | ⊢ ( ∃ 𝑎 ∈ ℝ ∀ 𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } 𝑥 ≤ 𝑦 ) |
| 28 | 7 27 | sylbir | ⊢ ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } 𝑥 ≤ 𝑦 ) |