This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image under negation of a nonempty set of reals is nonempty. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | negn0 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) | |
| 2 | ssel | ⊢ ( 𝐴 ⊆ ℝ → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℝ ) ) | |
| 3 | renegcl | ⊢ ( 𝑥 ∈ ℝ → - 𝑥 ∈ ℝ ) | |
| 4 | negeq | ⊢ ( 𝑧 = - 𝑥 → - 𝑧 = - - 𝑥 ) | |
| 5 | 4 | eleq1d | ⊢ ( 𝑧 = - 𝑥 → ( - 𝑧 ∈ 𝐴 ↔ - - 𝑥 ∈ 𝐴 ) ) |
| 6 | 5 | elrab3 | ⊢ ( - 𝑥 ∈ ℝ → ( - 𝑥 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ↔ - - 𝑥 ∈ 𝐴 ) ) |
| 7 | 3 6 | syl | ⊢ ( 𝑥 ∈ ℝ → ( - 𝑥 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ↔ - - 𝑥 ∈ 𝐴 ) ) |
| 8 | recn | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) | |
| 9 | 8 | negnegd | ⊢ ( 𝑥 ∈ ℝ → - - 𝑥 = 𝑥 ) |
| 10 | 9 | eleq1d | ⊢ ( 𝑥 ∈ ℝ → ( - - 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) |
| 11 | 7 10 | bitrd | ⊢ ( 𝑥 ∈ ℝ → ( - 𝑥 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ↔ 𝑥 ∈ 𝐴 ) ) |
| 12 | 11 | biimprd | ⊢ ( 𝑥 ∈ ℝ → ( 𝑥 ∈ 𝐴 → - 𝑥 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ) ) |
| 13 | 2 12 | syli | ⊢ ( 𝐴 ⊆ ℝ → ( 𝑥 ∈ 𝐴 → - 𝑥 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ) ) |
| 14 | elex2 | ⊢ ( - 𝑥 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } → ∃ 𝑦 𝑦 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ) | |
| 15 | 13 14 | syl6 | ⊢ ( 𝐴 ⊆ ℝ → ( 𝑥 ∈ 𝐴 → ∃ 𝑦 𝑦 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ) ) |
| 16 | n0 | ⊢ ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ) | |
| 17 | 15 16 | imbitrrdi | ⊢ ( 𝐴 ⊆ ℝ → ( 𝑥 ∈ 𝐴 → { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ≠ ∅ ) ) |
| 18 | 17 | exlimdv | ⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑥 𝑥 ∈ 𝐴 → { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ≠ ∅ ) ) |
| 19 | 1 18 | biimtrid | ⊢ ( 𝐴 ⊆ ℝ → ( 𝐴 ≠ ∅ → { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ≠ ∅ ) ) |
| 20 | 19 | imp | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ≠ ∅ ) |