This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a set of reals is bounded below, it is bounded below by an integer. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lbzbi | ⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv | ⊢ Ⅎ 𝑥 𝐴 ⊆ ℝ | |
| 2 | nfre1 | ⊢ Ⅎ 𝑥 ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 | |
| 3 | btwnz | ⊢ ( 𝑥 ∈ ℝ → ( ∃ 𝑧 ∈ ℤ 𝑧 < 𝑥 ∧ ∃ 𝑧 ∈ ℤ 𝑥 < 𝑧 ) ) | |
| 4 | 3 | simpld | ⊢ ( 𝑥 ∈ ℝ → ∃ 𝑧 ∈ ℤ 𝑧 < 𝑥 ) |
| 5 | ssel2 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) | |
| 6 | zre | ⊢ ( 𝑧 ∈ ℤ → 𝑧 ∈ ℝ ) | |
| 7 | ltleletr | ⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑧 < 𝑥 ∧ 𝑥 ≤ 𝑦 ) → 𝑧 ≤ 𝑦 ) ) | |
| 8 | 6 7 | syl3an1 | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑧 < 𝑥 ∧ 𝑥 ≤ 𝑦 ) → 𝑧 ≤ 𝑦 ) ) |
| 9 | 8 | expd | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑧 < 𝑥 → ( 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) |
| 10 | 9 | 3expia | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( 𝑦 ∈ ℝ → ( 𝑧 < 𝑥 → ( 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) ) |
| 11 | 5 10 | syl5 | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴 ) → ( 𝑧 < 𝑥 → ( 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) ) |
| 12 | 11 | expdimp | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) ∧ 𝐴 ⊆ ℝ ) → ( 𝑦 ∈ 𝐴 → ( 𝑧 < 𝑥 → ( 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) ) |
| 13 | 12 | com23 | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) ∧ 𝐴 ⊆ ℝ ) → ( 𝑧 < 𝑥 → ( 𝑦 ∈ 𝐴 → ( 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) ) |
| 14 | 13 | imp | ⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) ∧ 𝐴 ⊆ ℝ ) ∧ 𝑧 < 𝑥 ) → ( 𝑦 ∈ 𝐴 → ( 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) |
| 15 | 14 | ralrimiv | ⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) ∧ 𝐴 ⊆ ℝ ) ∧ 𝑧 < 𝑥 ) → ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) |
| 16 | ralim | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) → ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ∀ 𝑦 ∈ 𝐴 𝑧 ≤ 𝑦 ) ) | |
| 17 | 15 16 | syl | ⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) ∧ 𝐴 ⊆ ℝ ) ∧ 𝑧 < 𝑥 ) → ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ∀ 𝑦 ∈ 𝐴 𝑧 ≤ 𝑦 ) ) |
| 18 | 17 | ex | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) ∧ 𝐴 ⊆ ℝ ) → ( 𝑧 < 𝑥 → ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ∀ 𝑦 ∈ 𝐴 𝑧 ≤ 𝑦 ) ) ) |
| 19 | 18 | anasss | ⊢ ( ( 𝑧 ∈ ℤ ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ ) ) → ( 𝑧 < 𝑥 → ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ∀ 𝑦 ∈ 𝐴 𝑧 ≤ 𝑦 ) ) ) |
| 20 | 19 | expcom | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ ) → ( 𝑧 ∈ ℤ → ( 𝑧 < 𝑥 → ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ∀ 𝑦 ∈ 𝐴 𝑧 ≤ 𝑦 ) ) ) ) |
| 21 | 20 | com23 | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ ) → ( 𝑧 < 𝑥 → ( 𝑧 ∈ ℤ → ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ∀ 𝑦 ∈ 𝐴 𝑧 ≤ 𝑦 ) ) ) ) |
| 22 | 21 | imp | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑧 < 𝑥 ) → ( 𝑧 ∈ ℤ → ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ∀ 𝑦 ∈ 𝐴 𝑧 ≤ 𝑦 ) ) ) |
| 23 | 22 | imdistand | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑧 < 𝑥 ) → ( ( 𝑧 ∈ ℤ ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ( 𝑧 ∈ ℤ ∧ ∀ 𝑦 ∈ 𝐴 𝑧 ≤ 𝑦 ) ) ) |
| 24 | breq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ≤ 𝑦 ↔ 𝑧 ≤ 𝑦 ) ) | |
| 25 | 24 | ralbidv | ⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 𝑧 ≤ 𝑦 ) ) |
| 26 | 25 | rspcev | ⊢ ( ( 𝑧 ∈ ℤ ∧ ∀ 𝑦 ∈ 𝐴 𝑧 ≤ 𝑦 ) → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
| 27 | 23 26 | syl6 | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑧 < 𝑥 ) → ( ( 𝑧 ∈ ℤ ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
| 28 | 27 | ex | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ ) → ( 𝑧 < 𝑥 → ( ( 𝑧 ∈ ℤ ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) ) |
| 29 | 28 | com23 | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( 𝑧 ∈ ℤ ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ( 𝑧 < 𝑥 → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) ) |
| 30 | 29 | ancomsd | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ∧ 𝑧 ∈ ℤ ) → ( 𝑧 < 𝑥 → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) ) |
| 31 | 30 | expdimp | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ( 𝑧 ∈ ℤ → ( 𝑧 < 𝑥 → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) ) |
| 32 | 31 | rexlimdv | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ( ∃ 𝑧 ∈ ℤ 𝑧 < 𝑥 → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
| 33 | 32 | anasss | ⊢ ( ( 𝑥 ∈ ℝ ∧ ( 𝐴 ⊆ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) → ( ∃ 𝑧 ∈ ℤ 𝑧 < 𝑥 → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
| 34 | 33 | expcom | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ( 𝑥 ∈ ℝ → ( ∃ 𝑧 ∈ ℤ 𝑧 < 𝑥 → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) ) |
| 35 | 4 34 | mpdi | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ( 𝑥 ∈ ℝ → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
| 36 | 35 | ex | ⊢ ( 𝐴 ⊆ ℝ → ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ( 𝑥 ∈ ℝ → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) ) |
| 37 | 36 | com23 | ⊢ ( 𝐴 ⊆ ℝ → ( 𝑥 ∈ ℝ → ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) ) |
| 38 | 1 2 37 | rexlimd | ⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
| 39 | zssre | ⊢ ℤ ⊆ ℝ | |
| 40 | ssrexv | ⊢ ( ℤ ⊆ ℝ → ( ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) | |
| 41 | 39 40 | ax-mp | ⊢ ( ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
| 42 | 38 41 | impbid1 | ⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |