This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cartesian product dominates successor for set with cardinality greater than 1. Proposition 10.38 of TakeutiZaring p. 93 (but generalized to arbitrary sets, not just ordinals). (Contributed by NM, 3-Sep-2004) (Proof shortened by Mario Carneiro, 27-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sucxpdom | |- ( 1o ~< A -> suc A ~<_ ( A X. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-suc | |- suc A = ( A u. { A } ) |
|
| 2 | relsdom | |- Rel ~< |
|
| 3 | 2 | brrelex2i | |- ( 1o ~< A -> A e. _V ) |
| 4 | 1on | |- 1o e. On |
|
| 5 | xpsneng | |- ( ( A e. _V /\ 1o e. On ) -> ( A X. { 1o } ) ~~ A ) |
|
| 6 | 3 4 5 | sylancl | |- ( 1o ~< A -> ( A X. { 1o } ) ~~ A ) |
| 7 | 6 | ensymd | |- ( 1o ~< A -> A ~~ ( A X. { 1o } ) ) |
| 8 | endom | |- ( A ~~ ( A X. { 1o } ) -> A ~<_ ( A X. { 1o } ) ) |
|
| 9 | 7 8 | syl | |- ( 1o ~< A -> A ~<_ ( A X. { 1o } ) ) |
| 10 | ensn1g | |- ( A e. _V -> { A } ~~ 1o ) |
|
| 11 | 3 10 | syl | |- ( 1o ~< A -> { A } ~~ 1o ) |
| 12 | ensdomtr | |- ( ( { A } ~~ 1o /\ 1o ~< A ) -> { A } ~< A ) |
|
| 13 | 11 12 | mpancom | |- ( 1o ~< A -> { A } ~< A ) |
| 14 | 0ex | |- (/) e. _V |
|
| 15 | xpsneng | |- ( ( A e. _V /\ (/) e. _V ) -> ( A X. { (/) } ) ~~ A ) |
|
| 16 | 3 14 15 | sylancl | |- ( 1o ~< A -> ( A X. { (/) } ) ~~ A ) |
| 17 | 16 | ensymd | |- ( 1o ~< A -> A ~~ ( A X. { (/) } ) ) |
| 18 | sdomentr | |- ( ( { A } ~< A /\ A ~~ ( A X. { (/) } ) ) -> { A } ~< ( A X. { (/) } ) ) |
|
| 19 | 13 17 18 | syl2anc | |- ( 1o ~< A -> { A } ~< ( A X. { (/) } ) ) |
| 20 | sdomdom | |- ( { A } ~< ( A X. { (/) } ) -> { A } ~<_ ( A X. { (/) } ) ) |
|
| 21 | 19 20 | syl | |- ( 1o ~< A -> { A } ~<_ ( A X. { (/) } ) ) |
| 22 | 1n0 | |- 1o =/= (/) |
|
| 23 | xpsndisj | |- ( 1o =/= (/) -> ( ( A X. { 1o } ) i^i ( A X. { (/) } ) ) = (/) ) |
|
| 24 | 22 23 | mp1i | |- ( 1o ~< A -> ( ( A X. { 1o } ) i^i ( A X. { (/) } ) ) = (/) ) |
| 25 | undom | |- ( ( ( A ~<_ ( A X. { 1o } ) /\ { A } ~<_ ( A X. { (/) } ) ) /\ ( ( A X. { 1o } ) i^i ( A X. { (/) } ) ) = (/) ) -> ( A u. { A } ) ~<_ ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) ) |
|
| 26 | 9 21 24 25 | syl21anc | |- ( 1o ~< A -> ( A u. { A } ) ~<_ ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) ) |
| 27 | sdomentr | |- ( ( 1o ~< A /\ A ~~ ( A X. { 1o } ) ) -> 1o ~< ( A X. { 1o } ) ) |
|
| 28 | 7 27 | mpdan | |- ( 1o ~< A -> 1o ~< ( A X. { 1o } ) ) |
| 29 | sdomentr | |- ( ( 1o ~< A /\ A ~~ ( A X. { (/) } ) ) -> 1o ~< ( A X. { (/) } ) ) |
|
| 30 | 17 29 | mpdan | |- ( 1o ~< A -> 1o ~< ( A X. { (/) } ) ) |
| 31 | unxpdom | |- ( ( 1o ~< ( A X. { 1o } ) /\ 1o ~< ( A X. { (/) } ) ) -> ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) ~<_ ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) ) |
|
| 32 | 28 30 31 | syl2anc | |- ( 1o ~< A -> ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) ~<_ ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) ) |
| 33 | domtr | |- ( ( ( A u. { A } ) ~<_ ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) /\ ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) ~<_ ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) ) -> ( A u. { A } ) ~<_ ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) ) |
|
| 34 | 26 32 33 | syl2anc | |- ( 1o ~< A -> ( A u. { A } ) ~<_ ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) ) |
| 35 | xpen | |- ( ( ( A X. { 1o } ) ~~ A /\ ( A X. { (/) } ) ~~ A ) -> ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) ~~ ( A X. A ) ) |
|
| 36 | 6 16 35 | syl2anc | |- ( 1o ~< A -> ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) ~~ ( A X. A ) ) |
| 37 | domentr | |- ( ( ( A u. { A } ) ~<_ ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) /\ ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) ~~ ( A X. A ) ) -> ( A u. { A } ) ~<_ ( A X. A ) ) |
|
| 38 | 34 36 37 | syl2anc | |- ( 1o ~< A -> ( A u. { A } ) ~<_ ( A X. A ) ) |
| 39 | 1 38 | eqbrtrid | |- ( 1o ~< A -> suc A ~<_ ( A X. A ) ) |