This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgraph of a pseudograph is a pseudograph. (Contributed by AV, 16-Nov-2020) (Proof shortened by AV, 21-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subupgr | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑆 SubGraph 𝐺 ) → 𝑆 ∈ UPGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝑆 ) | |
| 2 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 𝑆 ) | |
| 4 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 5 | eqid | ⊢ ( Edg ‘ 𝑆 ) = ( Edg ‘ 𝑆 ) | |
| 6 | 1 2 3 4 5 | subgrprop2 | ⊢ ( 𝑆 SubGraph 𝐺 → ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ) |
| 7 | upgruhgr | ⊢ ( 𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph ) | |
| 8 | subgruhgrfun | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺 ) → Fun ( iEdg ‘ 𝑆 ) ) | |
| 9 | 7 8 | sylan | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑆 SubGraph 𝐺 ) → Fun ( iEdg ‘ 𝑆 ) ) |
| 10 | 9 | ancoms | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) → Fun ( iEdg ‘ 𝑆 ) ) |
| 11 | 10 | funfnd | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) → ( iEdg ‘ 𝑆 ) Fn dom ( iEdg ‘ 𝑆 ) ) |
| 12 | 11 | adantl | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) → ( iEdg ‘ 𝑆 ) Fn dom ( iEdg ‘ 𝑆 ) ) |
| 13 | fveq2 | ⊢ ( 𝑒 = ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) → ( ♯ ‘ 𝑒 ) = ( ♯ ‘ ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ) ) | |
| 14 | 13 | breq1d | ⊢ ( 𝑒 = ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) → ( ( ♯ ‘ 𝑒 ) ≤ 2 ↔ ( ♯ ‘ ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ) ≤ 2 ) ) |
| 15 | 7 | anim2i | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) → ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph ) ) |
| 16 | 15 | adantl | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) → ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph ) ) |
| 17 | 16 | ancomd | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) → ( 𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺 ) ) |
| 18 | 17 | anim1i | ⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( 𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺 ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) ) |
| 19 | 18 | simplld | ⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝐺 ∈ UHGraph ) |
| 20 | simpl | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) → 𝑆 SubGraph 𝐺 ) | |
| 21 | 20 | adantl | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) → 𝑆 SubGraph 𝐺 ) |
| 22 | 21 | adantr | ⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝑆 SubGraph 𝐺 ) |
| 23 | simpr | ⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) | |
| 24 | 1 3 19 22 23 | subgruhgredgd | ⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) |
| 25 | 4 | uhgrfun | ⊢ ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
| 26 | 7 25 | syl | ⊢ ( 𝐺 ∈ UPGraph → Fun ( iEdg ‘ 𝐺 ) ) |
| 27 | 26 | ad2antll | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) → Fun ( iEdg ‘ 𝐺 ) ) |
| 28 | 27 | adantr | ⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → Fun ( iEdg ‘ 𝐺 ) ) |
| 29 | simpll2 | ⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ) | |
| 30 | funssfv | ⊢ ( ( Fun ( iEdg ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ) | |
| 31 | 28 29 23 30 | syl3anc | ⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ) |
| 32 | 31 | eqcomd | ⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) |
| 33 | 32 | fveq2d | ⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ♯ ‘ ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ) = ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 34 | subgreldmiedg | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ) | |
| 35 | 34 | ex | ⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) → 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ) ) |
| 36 | 35 | adantr | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) → ( 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) → 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ) ) |
| 37 | 36 | adantl | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) → ( 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) → 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ) ) |
| 38 | simpr | ⊢ ( ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UPGraph ) → 𝐺 ∈ UPGraph ) | |
| 39 | 26 | funfnd | ⊢ ( 𝐺 ∈ UPGraph → ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) ) |
| 40 | 39 | adantl | ⊢ ( ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UPGraph ) → ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) ) |
| 41 | simpl | ⊢ ( ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UPGraph ) → 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ) | |
| 42 | 2 4 | upgrle | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ 2 ) |
| 43 | 38 40 41 42 | syl3anc | ⊢ ( ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UPGraph ) → ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ 2 ) |
| 44 | 43 | expcom | ⊢ ( 𝐺 ∈ UPGraph → ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) → ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ 2 ) ) |
| 45 | 44 | ad2antll | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) → ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) → ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ 2 ) ) |
| 46 | 37 45 | syld | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) → ( 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) → ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ 2 ) ) |
| 47 | 46 | imp | ⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ 2 ) |
| 48 | 33 47 | eqbrtrd | ⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ♯ ‘ ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ) ≤ 2 ) |
| 49 | 14 24 48 | elrabd | ⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑒 ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑒 ) ≤ 2 } ) |
| 50 | 49 | ralrimiva | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) → ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑒 ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑒 ) ≤ 2 } ) |
| 51 | fnfvrnss | ⊢ ( ( ( iEdg ‘ 𝑆 ) Fn dom ( iEdg ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑒 ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑒 ) ≤ 2 } ) → ran ( iEdg ‘ 𝑆 ) ⊆ { 𝑒 ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑒 ) ≤ 2 } ) | |
| 52 | 12 50 51 | syl2anc | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) → ran ( iEdg ‘ 𝑆 ) ⊆ { 𝑒 ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑒 ) ≤ 2 } ) |
| 53 | df-f | ⊢ ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ { 𝑒 ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑒 ) ≤ 2 } ↔ ( ( iEdg ‘ 𝑆 ) Fn dom ( iEdg ‘ 𝑆 ) ∧ ran ( iEdg ‘ 𝑆 ) ⊆ { 𝑒 ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑒 ) ≤ 2 } ) ) | |
| 54 | 12 52 53 | sylanbrc | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) → ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ { 𝑒 ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑒 ) ≤ 2 } ) |
| 55 | subgrv | ⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑆 ∈ V ∧ 𝐺 ∈ V ) ) | |
| 56 | 1 3 | isupgr | ⊢ ( 𝑆 ∈ V → ( 𝑆 ∈ UPGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ { 𝑒 ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑒 ) ≤ 2 } ) ) |
| 57 | 56 | adantr | ⊢ ( ( 𝑆 ∈ V ∧ 𝐺 ∈ V ) → ( 𝑆 ∈ UPGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ { 𝑒 ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑒 ) ≤ 2 } ) ) |
| 58 | 55 57 | syl | ⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑆 ∈ UPGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ { 𝑒 ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑒 ) ≤ 2 } ) ) |
| 59 | 58 | adantr | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) → ( 𝑆 ∈ UPGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ { 𝑒 ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑒 ) ≤ 2 } ) ) |
| 60 | 59 | adantl | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) → ( 𝑆 ∈ UPGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ { 𝑒 ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑒 ) ≤ 2 } ) ) |
| 61 | 54 60 | mpbird | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) ) → 𝑆 ∈ UPGraph ) |
| 62 | 61 | ex | ⊢ ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) → ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) → 𝑆 ∈ UPGraph ) ) |
| 63 | 6 62 | syl | ⊢ ( 𝑆 SubGraph 𝐺 → ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UPGraph ) → 𝑆 ∈ UPGraph ) ) |
| 64 | 63 | anabsi8 | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑆 SubGraph 𝐺 ) → 𝑆 ∈ UPGraph ) |