This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgraph of a pseudograph is a pseudograph. (Contributed by AV, 16-Nov-2020) (Proof shortened by AV, 21-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subupgr | |- ( ( G e. UPGraph /\ S SubGraph G ) -> S e. UPGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` S ) = ( Vtx ` S ) |
|
| 2 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 3 | eqid | |- ( iEdg ` S ) = ( iEdg ` S ) |
|
| 4 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 5 | eqid | |- ( Edg ` S ) = ( Edg ` S ) |
|
| 6 | 1 2 3 4 5 | subgrprop2 | |- ( S SubGraph G -> ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) ) |
| 7 | upgruhgr | |- ( G e. UPGraph -> G e. UHGraph ) |
|
| 8 | subgruhgrfun | |- ( ( G e. UHGraph /\ S SubGraph G ) -> Fun ( iEdg ` S ) ) |
|
| 9 | 7 8 | sylan | |- ( ( G e. UPGraph /\ S SubGraph G ) -> Fun ( iEdg ` S ) ) |
| 10 | 9 | ancoms | |- ( ( S SubGraph G /\ G e. UPGraph ) -> Fun ( iEdg ` S ) ) |
| 11 | 10 | funfnd | |- ( ( S SubGraph G /\ G e. UPGraph ) -> ( iEdg ` S ) Fn dom ( iEdg ` S ) ) |
| 12 | 11 | adantl | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) -> ( iEdg ` S ) Fn dom ( iEdg ` S ) ) |
| 13 | fveq2 | |- ( e = ( ( iEdg ` S ) ` x ) -> ( # ` e ) = ( # ` ( ( iEdg ` S ) ` x ) ) ) |
|
| 14 | 13 | breq1d | |- ( e = ( ( iEdg ` S ) ` x ) -> ( ( # ` e ) <_ 2 <-> ( # ` ( ( iEdg ` S ) ` x ) ) <_ 2 ) ) |
| 15 | 7 | anim2i | |- ( ( S SubGraph G /\ G e. UPGraph ) -> ( S SubGraph G /\ G e. UHGraph ) ) |
| 16 | 15 | adantl | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) -> ( S SubGraph G /\ G e. UHGraph ) ) |
| 17 | 16 | ancomd | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) -> ( G e. UHGraph /\ S SubGraph G ) ) |
| 18 | 17 | anim1i | |- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> ( ( G e. UHGraph /\ S SubGraph G ) /\ x e. dom ( iEdg ` S ) ) ) |
| 19 | 18 | simplld | |- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> G e. UHGraph ) |
| 20 | simpl | |- ( ( S SubGraph G /\ G e. UPGraph ) -> S SubGraph G ) |
|
| 21 | 20 | adantl | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) -> S SubGraph G ) |
| 22 | 21 | adantr | |- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> S SubGraph G ) |
| 23 | simpr | |- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> x e. dom ( iEdg ` S ) ) |
|
| 24 | 1 3 19 22 23 | subgruhgredgd | |- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> ( ( iEdg ` S ) ` x ) e. ( ~P ( Vtx ` S ) \ { (/) } ) ) |
| 25 | 4 | uhgrfun | |- ( G e. UHGraph -> Fun ( iEdg ` G ) ) |
| 26 | 7 25 | syl | |- ( G e. UPGraph -> Fun ( iEdg ` G ) ) |
| 27 | 26 | ad2antll | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) -> Fun ( iEdg ` G ) ) |
| 28 | 27 | adantr | |- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> Fun ( iEdg ` G ) ) |
| 29 | simpll2 | |- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> ( iEdg ` S ) C_ ( iEdg ` G ) ) |
|
| 30 | funssfv | |- ( ( Fun ( iEdg ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ x e. dom ( iEdg ` S ) ) -> ( ( iEdg ` G ) ` x ) = ( ( iEdg ` S ) ` x ) ) |
|
| 31 | 28 29 23 30 | syl3anc | |- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> ( ( iEdg ` G ) ` x ) = ( ( iEdg ` S ) ` x ) ) |
| 32 | 31 | eqcomd | |- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> ( ( iEdg ` S ) ` x ) = ( ( iEdg ` G ) ` x ) ) |
| 33 | 32 | fveq2d | |- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> ( # ` ( ( iEdg ` S ) ` x ) ) = ( # ` ( ( iEdg ` G ) ` x ) ) ) |
| 34 | subgreldmiedg | |- ( ( S SubGraph G /\ x e. dom ( iEdg ` S ) ) -> x e. dom ( iEdg ` G ) ) |
|
| 35 | 34 | ex | |- ( S SubGraph G -> ( x e. dom ( iEdg ` S ) -> x e. dom ( iEdg ` G ) ) ) |
| 36 | 35 | adantr | |- ( ( S SubGraph G /\ G e. UPGraph ) -> ( x e. dom ( iEdg ` S ) -> x e. dom ( iEdg ` G ) ) ) |
| 37 | 36 | adantl | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) -> ( x e. dom ( iEdg ` S ) -> x e. dom ( iEdg ` G ) ) ) |
| 38 | simpr | |- ( ( x e. dom ( iEdg ` G ) /\ G e. UPGraph ) -> G e. UPGraph ) |
|
| 39 | 26 | funfnd | |- ( G e. UPGraph -> ( iEdg ` G ) Fn dom ( iEdg ` G ) ) |
| 40 | 39 | adantl | |- ( ( x e. dom ( iEdg ` G ) /\ G e. UPGraph ) -> ( iEdg ` G ) Fn dom ( iEdg ` G ) ) |
| 41 | simpl | |- ( ( x e. dom ( iEdg ` G ) /\ G e. UPGraph ) -> x e. dom ( iEdg ` G ) ) |
|
| 42 | 2 4 | upgrle | |- ( ( G e. UPGraph /\ ( iEdg ` G ) Fn dom ( iEdg ` G ) /\ x e. dom ( iEdg ` G ) ) -> ( # ` ( ( iEdg ` G ) ` x ) ) <_ 2 ) |
| 43 | 38 40 41 42 | syl3anc | |- ( ( x e. dom ( iEdg ` G ) /\ G e. UPGraph ) -> ( # ` ( ( iEdg ` G ) ` x ) ) <_ 2 ) |
| 44 | 43 | expcom | |- ( G e. UPGraph -> ( x e. dom ( iEdg ` G ) -> ( # ` ( ( iEdg ` G ) ` x ) ) <_ 2 ) ) |
| 45 | 44 | ad2antll | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) -> ( x e. dom ( iEdg ` G ) -> ( # ` ( ( iEdg ` G ) ` x ) ) <_ 2 ) ) |
| 46 | 37 45 | syld | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) -> ( x e. dom ( iEdg ` S ) -> ( # ` ( ( iEdg ` G ) ` x ) ) <_ 2 ) ) |
| 47 | 46 | imp | |- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> ( # ` ( ( iEdg ` G ) ` x ) ) <_ 2 ) |
| 48 | 33 47 | eqbrtrd | |- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> ( # ` ( ( iEdg ` S ) ` x ) ) <_ 2 ) |
| 49 | 14 24 48 | elrabd | |- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> ( ( iEdg ` S ) ` x ) e. { e e. ( ~P ( Vtx ` S ) \ { (/) } ) | ( # ` e ) <_ 2 } ) |
| 50 | 49 | ralrimiva | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) -> A. x e. dom ( iEdg ` S ) ( ( iEdg ` S ) ` x ) e. { e e. ( ~P ( Vtx ` S ) \ { (/) } ) | ( # ` e ) <_ 2 } ) |
| 51 | fnfvrnss | |- ( ( ( iEdg ` S ) Fn dom ( iEdg ` S ) /\ A. x e. dom ( iEdg ` S ) ( ( iEdg ` S ) ` x ) e. { e e. ( ~P ( Vtx ` S ) \ { (/) } ) | ( # ` e ) <_ 2 } ) -> ran ( iEdg ` S ) C_ { e e. ( ~P ( Vtx ` S ) \ { (/) } ) | ( # ` e ) <_ 2 } ) |
|
| 52 | 12 50 51 | syl2anc | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) -> ran ( iEdg ` S ) C_ { e e. ( ~P ( Vtx ` S ) \ { (/) } ) | ( # ` e ) <_ 2 } ) |
| 53 | df-f | |- ( ( iEdg ` S ) : dom ( iEdg ` S ) --> { e e. ( ~P ( Vtx ` S ) \ { (/) } ) | ( # ` e ) <_ 2 } <-> ( ( iEdg ` S ) Fn dom ( iEdg ` S ) /\ ran ( iEdg ` S ) C_ { e e. ( ~P ( Vtx ` S ) \ { (/) } ) | ( # ` e ) <_ 2 } ) ) |
|
| 54 | 12 52 53 | sylanbrc | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) -> ( iEdg ` S ) : dom ( iEdg ` S ) --> { e e. ( ~P ( Vtx ` S ) \ { (/) } ) | ( # ` e ) <_ 2 } ) |
| 55 | subgrv | |- ( S SubGraph G -> ( S e. _V /\ G e. _V ) ) |
|
| 56 | 1 3 | isupgr | |- ( S e. _V -> ( S e. UPGraph <-> ( iEdg ` S ) : dom ( iEdg ` S ) --> { e e. ( ~P ( Vtx ` S ) \ { (/) } ) | ( # ` e ) <_ 2 } ) ) |
| 57 | 56 | adantr | |- ( ( S e. _V /\ G e. _V ) -> ( S e. UPGraph <-> ( iEdg ` S ) : dom ( iEdg ` S ) --> { e e. ( ~P ( Vtx ` S ) \ { (/) } ) | ( # ` e ) <_ 2 } ) ) |
| 58 | 55 57 | syl | |- ( S SubGraph G -> ( S e. UPGraph <-> ( iEdg ` S ) : dom ( iEdg ` S ) --> { e e. ( ~P ( Vtx ` S ) \ { (/) } ) | ( # ` e ) <_ 2 } ) ) |
| 59 | 58 | adantr | |- ( ( S SubGraph G /\ G e. UPGraph ) -> ( S e. UPGraph <-> ( iEdg ` S ) : dom ( iEdg ` S ) --> { e e. ( ~P ( Vtx ` S ) \ { (/) } ) | ( # ` e ) <_ 2 } ) ) |
| 60 | 59 | adantl | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) -> ( S e. UPGraph <-> ( iEdg ` S ) : dom ( iEdg ` S ) --> { e e. ( ~P ( Vtx ` S ) \ { (/) } ) | ( # ` e ) <_ 2 } ) ) |
| 61 | 54 60 | mpbird | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) -> S e. UPGraph ) |
| 62 | 61 | ex | |- ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) -> ( ( S SubGraph G /\ G e. UPGraph ) -> S e. UPGraph ) ) |
| 63 | 6 62 | syl | |- ( S SubGraph G -> ( ( S SubGraph G /\ G e. UPGraph ) -> S e. UPGraph ) ) |
| 64 | 63 | anabsi8 | |- ( ( G e. UPGraph /\ S SubGraph G ) -> S e. UPGraph ) |